217 research outputs found

    Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling

    Get PDF
    This manuscript describes the gas separation performance of PIM-2, a partially fluorinated linear copolymer synthesized from 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethylspirobisindane (TTSBI) and decafluorobiphenyl (DFBP). As one of the early members of the family of polymers of intrinsic microporosity, it had never been tested as a gas separation membrane because of insufficient mechanical resistance. This has been solved only recently, allowing the preparation of robust self-standing films. Molecular modelling studies demonstrated a high fractional free volume (34%) and an elevated surface area (642 m2 g-1), and the latter is in good agreement with experimental BET results. Pure gas permeabilities measured on a fixed-volume time-lag instrument at 1 bar compare well with the results of mixed separation tests on a variable volume setup from 1-6 bar(a). Molecular modelling and independent sorption measurements on a gravimetric sorption balance both show strong dual-mode sorption behaviour, especially for CO2 and to a lesser extent for CH4. Temperature-dependent pure gas permeation measurements show typical Arrhenius behaviour, with a clear increase in the activation energy for diffusion with the increasing molecular size of the gas, indicating high size-selectivity. This is in agreement with the highly rigid PIM structure, determined by AFM force spectroscopy measurements. The dual-mode behaviour results in a moderate pressure dependence of the CO2 permeability and the CO2/N2 and CO2/CH4 selectivity, all slightly decreasing with increasing pressure. The presence of humidity in the gas stream has a remarkable small effect on the membrane performance, which is probably due to the high fluorine content and the consequently low water vapour solubility in the polymer, as confirmed by gravimetric sorption measurements. The manuscript describes an extensive study on the structure-property relationships in PIM-2. © 2019 Elsevier B.V.European Commission, EC Grantová Agentura Ceské Republiky, GA Ä?R: 18-05484S --Research on biogas upgrading presented in this work was supported by EU structural funding in the frame of Operational Programme Research, Development and Education, project No. CZ.02.1.01./0.0/0.0/17_049/0008419 “COOPERATION”. This work was further supported by the CNR-CAS bilateral agreement 2016–2018 “Innovative polymeric membranes for pervaporation and advanced gas and vapour separations” and by the Czech Science Foundation (grant no. 18-05484S ). Appendix A -

    DC and transient current distribution analysis from self-field measurements on ITER PFIS conductor

    Get PDF
    Current reconstruction in cable-in-conduit conductors (CICC) cables is a crucial issue to determine cables performance in working conditions, and must be performed using inverse problem approaches as direct measurement is not feasible. The current distribution has been studied for the ITER Poloidal Field Insert Sample (PFIS) conductor using annular arrays of Hall probes placed in three different locations along the sample during the test campaign at the SULTAN facility. The measurement apparatus is also described in the paper, together with the approach to current reconstruction

    Unraveling the mechanism of the one-pot synthesis of exchange coupled Co-based nano-heterostructures with a high energy product

    Get PDF
    The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron-cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m-3 by tuning the Co content in the metal precursor

    Does organic farming increase raspberry quality, aroma and beneficial bacterial biodiversity?

    Get PDF
    Plant-associated microbes can shape plant phenotype, performance, and productivity. Cultivation methods can influence the plant microbiome structure and differences observed in the nutritional quality of differently grown fruits might be due to variations in the microbiome taxonomic and functional composition. Here, the influence of organic and integrated pest management (IPM) cultivation on quality, aroma and microbiome of raspberry (Rubus idaeus L.) fruits was evaluated. Differences in the fruit microbiome of organic and IPM raspberry were examined by next-generation sequencing and bacterial isolates characterization to highlight the potential contribution of the resident-microflora to fruit characteristics and aroma. The cultivation method strongly influenced fruit nutraceutical traits, aroma and epiphytic bacterial biocoenosis. Organic cultivation resulted in smaller fruits with a higher anthocyanidins content and lower titratable acidity content in comparison to IPM berries. Management practices also influenced the amounts of acids, ketones, aldehydes and monoterpenes, emitted by fruits. Our results suggest that the effects on fruit quality could be related to differences in the population of Gluconobacter, Sphingomonas, Rosenbergiella, Brevibacillus and Methylobacterium on fruit. Finally, changes in fruit aroma can be partly explained by volatile organic compounds (VOCs) emitted by key bacterial genera characterizing organic and IPM raspberry fruit

    Star-shaped Magnetic-plasmonic Au@Fe3O4 nano-heterostructures for photothermal therapy

    Get PDF
    Here, we synthesize a Au@Fe3O4 core@shell system with a highly uniform unprecedented star-like shell morphology with combined plasmonic and magnetic properties. An advanced electron microscopy characterization allows assessing the multifaceted nature of the Au core and its role in the growth of the peculiar epitaxial star-like shell with excellent crystallinity and homogeneity. Magnetometry and magneto-optical spectroscopy revealed a pure magnetite shell, with a superior saturation magnetization compared to similar Au@Fe3O4 heterostructures reported in the literature, which is ascribed to the star-like morphology, as well as to the large thickness of the shell. Of note, Au@Fe3O4 nanostar-loaded cancer cells displayed magneto-mechanical stress under a low frequency external alternating magnetic field (few tens of Hz). On the other hand, such a uniform, homogeneous, and thick magnetite shell enables the shift of the plasmonic resonance of the Au core to 640 nm, which is the largest red shift achievable in Au@Fe3O4 homogeneous core@shell systems, prompting application in photothermal therapy and optical imaging in the first biologically transparent window. Preliminary experiments performing irradiation of a stable water suspension of the nanostar and Au@Fe3O4-loaded cancer cell culture suspension at 658 nm confirmed their optical response and their suitability for photothermal therapy. The outstanding features of the prepared system can be thus potentially exploited as a multifunctional platform for magnetic-plasmonic applications

    The global meningitis genome partnership.

    Get PDF
    Genomic surveillance of bacterial meningitis pathogens is essential for effective disease control globally, enabling identification of emerging and expanding strains and consequent public health interventions. While there has been a rise in the use of whole genome sequencing, this has been driven predominately by a subset of countries with adequate capacity and resources. Global capacity to participate in surveillance needs to be expanded, particularly in low and middle-income countries with high disease burdens. In light of this, the WHO-led collaboration, Defeating Meningitis by 2030 Global Roadmap, has called for the establishment of a Global Meningitis Genome Partnership that links resources for: N. meningitidis (Nm), S. pneumoniae (Sp), H. influenzae (Hi) and S. agalactiae (Sa) to improve worldwide co-ordination of strain identification and tracking. Existing platforms containing relevant genomes include: PubMLST: Nm (31,622), Sp (15,132), Hi (1935), Sa (9026); The Wellcome Sanger Institute: Nm (13,711), Sp (> 24,000), Sa (6200), Hi (1738); and BMGAP: Nm (8785), Hi (2030). A steering group is being established to coordinate the initiative and encourage high-quality data curation. Next steps include: developing guidelines on open-access sharing of genomic data; defining a core set of metadata; and facilitating development of user-friendly interfaces that represent publicly available data
    • …
    corecore