7 research outputs found
The Resistome of Farmed Fish Feces Contributes to the Enrichment of Antibiotic Resistance Genes in Sediments below Baltic Sea Fish Farms
Our previous studies showed that particular antibiotic resistance genes (ARGs) were enriched locally in sediments below fish farms in the Northern Baltic Sea, Finland, even when the selection pressure from antibiotics was negligible. We assumed that a constant influx of farmed fish feces could be the plausible source of the ARGs enriched in the farm sediments. In the present study, we analyzed the composition of the antibiotic resistome from the intestinal contents of 20 fish from the Baltic Sea farms. We used a high-throughput method, WaferGen qPCR array with 364 primer sets to detect and quantify ARGs, mobile genetic elements (MGE), and the 16S rRNA gene. Despite a considerably wide selection of qPCR primer sets, only 28 genes were detected in the intestinal contents. The detected genes were ARGs encoding resistance to sulfonamide (sul1), trimethoprim (dfrA1), tetracycline [tet(32), tetM, tetO, tetW], aminoglycoside (aadA1, aadA2), chloramphenicol (catA1), and efflux-pumps resistance genes (emrB, matA, mefA, msrA). The detected genes also included class 1 integron-associated genes (intI1, qacE?1) and transposases (tnpA). Importantly, most of the detected genes were the same genes enriched in the farm sediments. This preliminary study suggests that feces from farmed fish contribute to the ARG enrichment in farm sediments despite the lack of contemporaneous antibiotic treatments at the farms. We observed that the intestinal contents of individual farmed fish had their own resistome compositions. Our result also showed that the total relative abundances of transposases and tet genes were significantly correlated (p = 0.001, R-2 = 0.71). In addition, we analyzed the mucosal skin and gill filament resistomes of the farmed fish but only one multidrug-efflux resistance gene (emrB) was detected. To our knowledge, this is the first study reporting the resistome of farmed fish using a culture-independent method. Determining the possible sources of ARGs, especially mobilized ARGs, is essential for controlling the occurrence and spread of ARGs at fish farming facilities and for lowering the risk of ARG spread from the farms to surrounding environments.Peer reviewe
Towards monitoring the invisible threat: a global approach for tackling AMR in water resources and environment
The global threat of antimicrobial resistance (AMR) is now increasingly recognized for the danger posed by its environmental spread. Aquatic environments and wastewater represent a significant diffusion and selection pathway for antibiotic resistance genes and antibiotic resistant bacteria (ARGs and ARBs). During a collaborative hackathon event, the “Innovation Workshop on Water Quality Monitoring & Assessment,” held in September 2023, experts addressed four challenges related to water quality, including the challenge of globalization AMR surveillance in water. This paper, derived from the workshop findings, proposes a globally adaptable model for antimicrobial resistance surveillance intended as an advance to improve future monitoring systems. The new framework aims to address significant challenges, such as the lack of standardized methodological approaches or lack of funding, coordination, and awareness across a short-, medium- and long-term plan, integrating sustainability concepts, extending participation and monitoring capacity of countries, and offering efficient solutions. This vision is first articulated by creating a technical committee that promotes awareness of antimicrobial resistance and develops a single data management and communication platform. Subsequently, by developing local, national, and international policies, centralized laboratories will be established at the regional level, and built based on existing realities. These laboratories will include facilities to make the management of analyses more efficient, from sampling to reporting the final result. In the long term, activities that allow the maintenance of the created framework and continuous technological development and advancement will be promoted. All this will be achieved in collaboration with national and supranational bodies that are already addressing the issue at a global level
Antibiotic Resistomes and Microbiomes in the Surface Water along the Code River in Indonesia Reflect Drainage Basin Anthropogenic Activities
Water and sanitation are important factors in the emergence of antimicrobial resistance in low-and middle-income countries. Drug residues, metals, and various wastes foster the spread of antibiotic resistance genes (ARGs) with the help of mobile genetic elements (MGEs), and therefore, rivers receiving contaminants and enfluents from multiple sources are of special interest. We followed both the microbiome and resistome of the Code River in Indonesia from its pristine origin at the Merapi volcano through rural and then city areas to the coast of the Indian Ocean. We used a SmartChip quantitative PCR with 382 primer pairs for profiling the resistome and MGEs and 16S rRNA gene amplicon sequencing to analyze the bacterial communities. The community structure explained the resistome composition in rural areas, while the city sampling sites had lower bacterial diversity and more ARGs, which correlated with MGEs, suggesting increased mobility potential in response to pressures from human activities. Importantly, the vast majority of ARGs and MGEs were no longer detectable in marine waters at the ocean entrance. Our work provides information on the impact of different influents on river health as well as sheds light on how land use contributes to the river resistome and microbiome.Peer reviewe
Occurrence of sul and tet(M) genes in bacterial community in Japanese marine aquaculture environment throughout the year : Profile comparison with Taiwanese and Finnish aquaculture waters
The use of antibiotics in aquaculture causes selection pressure for antibiotic-resistant bacteria (ARB). Antibiotic resistance genes (ARGs) may persist in ARB and the environment for long time even after stopping drug administration. Here we show monthly differences in the occurrences of genes conferring resistance to sulfonamides (i.e. sul1, sul2, sul3), and tetracyclines (tet(M)) in Japanese aquaculture seawater accompanied by records of drug administration. sul2 was found to persist throughout the year, whereas the occurrences of sul1, sul3, and tet(M) changed month-to-month. sul3 and tet(M) were detected in natural bacterial assemblages in May and July, but not in colony-forming bacteria, thus suggesting that the sul3 was harbored by the non-culturable fraction of the bacterial community. Comparison of results from Taiwanese, Japanese, and Finnish aquaculture waters reveals that the profile of sul genes and tet(M) in Taiwan resembles that in Japan, but is distinct from that in Finland. To our knowledge, this work represents the first report to use the same method to compare the dynamics of sul genes and tet(M) in aquaculture seawater in different countries. (C) 2019 Elsevier B.V. All rights reserved.Peer reviewe