82 research outputs found
The physiological effects of hypobaric hypoxia versus normobaric hypoxia: a systematic review of crossover trials
Much hypoxia research has been carried out at high altitude in a hypobaric hypoxia (HH) environment. Many research teams seek to replicate high-altitude conditions at lower altitudes in either hypobaric hypoxic conditions or normobaric hypoxic (NH) laboratories. Implicit in this approach is the assumption that the only relevant condition that differs between these settings is the partial pressure of oxygen (PO2), which is commonly presumed to be the principal physiological stimulus to adaptation at high altitude. This systematic review is the first to present an overview of the current available literature regarding crossover studies relating to the different effects of HH and NH on human physiology. After applying our inclusion and exclusion criteria, 13 studies were deemed eligible for inclusion. Several studies reported a number of variables (e.g. minute ventilation and NO levels) that were different between the two conditions, lending support to the notion that true physiological difference is indeed present. However, the presence of confounding factors such as time spent in hypoxia, temperature, and humidity, and the limited statistical power due to small sample sizes, limit the conclusions that can be drawn from these findings. Standardisation of the study methods and reporting may aid interpretation of future studies and thereby improve the quality of data in this area. This is important to improve the quality of data that is used for improving the understanding of hypoxia tolerance, both at altitude and in the clinical setting
The 2018 Lake Louise Acute Mountain Sickness Score.
Roach, Robert C., Peter H. Hackett, Oswald Oelz, Peter Bärtsch, Andrew M. Luks, Martin J. MacInnis, J. Kenneth Baillie, and The Lake Louise AMS Score Consensus Committee. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 19:1-4, 2018.- The Lake Louise Acute Mountain Sickness (AMS) scoring system has been a useful research tool since first published in 1991. Recent studies have shown that disturbed sleep at altitude, one of the five symptoms scored for AMS, is more likely due to altitude hypoxia per se, and is not closely related to AMS. To address this issue, and also to evaluate the Lake Louise AMS score in light of decades of experience, experts in high altitude research undertook to revise the score. We here present an international consensus statement resulting from online discussions and meetings at the International Society of Mountain Medicine World Congress in Bolzano, Italy, in May 2014 and at the International Hypoxia Symposium in Lake Louise, Canada, in February 2015. The consensus group has revised the score to eliminate disturbed sleep as a questionnaire item, and has updated instructions for use of the score
Helicobacter pylori Perturbs Iron Trafficking in the Epithelium to Grow on the Cell Surface
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche
Strengthening altitude knowledge: a delphi study to define minimum knowledge of altitude illness for laypersons traveling to high altitude
Introduction: A lack of knowledge among laypersons about the hazards of high-altitude exposure contributes to morbidity and mortality from acute mountain sickness (AMS), high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE) among high-altitude travelers. There are guidelines regarding the recognition, prevention, and treatment of acute-altitude illness for experts, but essential knowledge for laypersons traveling to high altitudes has not been defined. We sought expert consensus on the essential knowledge required for people planning to travel to high altitudes.
Methods: The Delphi method was used. The panel consisted of two moderators, a core expert group and a plenary expert group. The moderators made a preliminary list of statements defining the desired minimum knowledge for laypersons traveling to high altitudes, based on the relevant literature. These preliminary statements were then reviewed, supplemented, and modified by a core expert group. A list of 33 statements was then presented to a plenary group of experts in successive rounds.
Results: It took three rounds to reach a consensus. Of the 10 core experts invited, 7 completed all the rounds. Of the 76 plenary experts, 41 (54%) participated in Round 1, and of these 41 a total of 32 (78%) experts completed all three rounds. The final list contained 28 statements in 5 categories (altitude physiology, sleeping at altitude, AMS, HACE, and HAPE). This list represents an expert consensus on the desired minimum knowledge for laypersons planning high-altitude travel.
Conclusion: Using the Delphi method, the STrengthening Altitude Knowledge initiative yielded a set of 28 statements representing essential learning objectives for laypersons who plan to travel to high altitudes. This list could be used to develop educational interventions
- …