11 research outputs found

    Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts

    Get PDF
    Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants.</p

    Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts.

    Get PDF
    Funder: National Institute for Basic Biology (NIBB) Collaborative Research Program (13-710)Funder: The Forschungskredit of the University of Zurich The University Research Priority Program “Evolution in Action” of the University of Zurich The Georges and Antoine Claraz Foundation (Switzerland)Funder: Spanish Ministry of Science, Innovation and Universities (BFU2016-80621-P)Funder: The Georges and Antoine Claraz Foundation (Switzerland) The Research Priority Program “Evolution in Action” of the University of ZurichFunder: Foundation of German Business (sdw), Georges and Antoine Claraz Foundation, URPP Evolution in Action of the University of ZurichFunder: Special Grant for Innovation in Research Program of the Technical University of Dresden (Germany).Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants

    Origin and evolution of the nuclear auxin response system.

    No full text

    A long look at short prokaryotic Argonautes

    No full text
    Argonaute proteins (Agos) use small 15–30 nucleotide-long guides to bind and/or cleave complementary target nucleic acids. Eukaryotic Agos mediate RNA-guided RNA silencing, while ‘long’ prokaryotic Agos (pAgos) use RNA or DNA guides to interfere with invading plasmid and viral DNA. Here, we review the function and mechanisms of truncated and highly divergent ‘short’ pAgos, which, until recently, remained functionally uncharacterized. Short pAgos have retained the Middle (MID) and P-element-Induced Wimpy Testis (PIWI) domains important for guide-mediated target binding, but lack the ability to cleave their targets. Instead, emerging insights reveal that various short pAgos interact with distinct accessory ‘effector’ enzymes. Upon guide-mediated detection of invading DNA by short pAgos, their associated effector enzymes kill the host cell and, consequentially, prevent spread of the invader

    The birth of a giant : evolutionary insights into the origin of auxin responses in plants

    No full text
    The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the “giant” of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes

    Assessment of infant outgrowth of cow’s milk allergy in relation to the faecal microbiome and metaproteome

    No full text
    Abstract Previous studies provide evidence for an association between modifications of the gut microbiota in early life and the development of food allergies. We studied the faecal microbiota composition (16S rRNA gene amplicon sequencing) and faecal microbiome functionality (metaproteomics) in a cohort of 40 infants diagnosed with cow’s milk allergy (CMA) when entering the study. Some of the infants showed outgrowth of CMA after 12 months, while others did not. Faecal microbiota composition of infants was analysed directly after CMA diagnosis (baseline) as well as 6 and 12 months after entering the study. The aim was to gain insight on gut microbiome parameters in relation to outgrowth of CMA. The results of this study show that microbiome differences related to outgrowth of CMA can be mainly identified at the taxonomic level of the 16S rRNA gene, and to a lesser extent at the protein-based microbial taxonomy and functional protein level. At the 16S rRNA gene level outgrowth of CMA is characterized by lower relative abundance of Lachnospiraceae at baseline and lower Bacteroidaceae at visit 12 months

    Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA

    No full text
    Argonaute proteins use single-stranded RNA or DNA guides to target complementary nucleic acids. This allows eukaryotic Argonaute proteins to mediate RNA interference and long prokaryotic Argonaute proteins to interfere with invading nucleic acids. The function and mechanisms of the phylogenetically distinct short prokaryotic Argonaute proteins remain poorly understood. We demonstrate that short prokaryotic Argonaute and the associated TIR-APAZ (SPARTA) proteins form heterodimeric complexes. Upon guide RNA-mediated target DNA binding, four SPARTA heterodimers form oligomers in which TIR domain-mediated NAD(P)ase activity is unleashed. When expressed in Escherichia coli, SPARTA is activated in the presence of highly transcribed multicopy plasmid DNA, which causes cell death through NAD(P)+ depletion. This results in the removal of plasmid-invaded cells from bacterial cultures. Furthermore, we show that SPARTA can be repurposed for the programmable detection of DNA sequences. In conclusion, our work identifies SPARTA as a prokaryotic immune system that reduces cell viability upon RNA-guided detection of invading DNA.BN/Stan Brouns La

    Design principles of a minimal auxin response system

    No full text
    Auxin controls numerous growth processes in land plants through a gene expression system that modulates ARF transcription factor activity1–3. Gene duplications in families encoding auxin response components have generated tremendous complexity in most land plants, and neofunctionalization enabled various unique response outputs during development1,3,4. However, it is unclear what fundamental biochemical principles underlie this complex response system. By studying the minimal system in Marchantia polymorpha, we derive an intuitive and simple model where a single auxin-dependent A-ARF activates gene expression. It is antagonized by an auxin-independent B-ARF that represses common target genes. The expression patterns of both ARF proteins define developmental zones where auxin response is permitted, quantitatively tuned or prevented. This fundamental design probably represents the ancestral system and formed the basis for inflated, complex systems

    Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts

    Get PDF
    Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants
    corecore