5 research outputs found

    Chronic kidney disease and fibrosis : the role of uremic retention solutes

    Get PDF
    Chronic kidney disease (CKD) is a major global health concern, and the uremic state is highly associated with fibrogenesis in several organs and tissues. Fibrosis is characterized by excessive production and deposition of extracellular matrix proteins with a detrimental impact on organ function. Another key feature of CKD is the retention and subsequent accumulation of solutes that are normally cleared by the healthy kidney. Several of these uremic retention solutes, including indoxyl sulfate and p-cresyl sulfate, have been suggested to be CKD-specific triggers for the development and perpetuation of fibrosis. The purpose of this brief review is to gather and discuss the current body of evidence linking uremic retention solutes to the fibrotic response during CKD, with a special emphasis on the pathophysiological mechanisms in the kidney

    Regional Differences in Intestinal Drug Metabolism

    Get PDF
    The intestines are key for the absorption of nutrients and water as well as drug metabolism, and it is well known that there are clear differences in the expression profile of drug metabolism enzymes along the intestinal tract. Yet, only a few studies have thoroughly investigated regional differences in human intestinal drug metabolism. In this study, we evaluated phase I and phase II metabolism in matched human ileum and colon precision-cut intestinal slices (PCIS). To this end, human PCIS were incubated for 3 h with testosterone (TT) and 7-hydroxycoumarin (7-HC) to examine phase I and phase II metabolism, respectively. Metabolite formation was assessed by high-performance liquid chromatography (HPLC) analysis. Our results demonstrated that androstenedione, 6β-hydroxytestosterone, 2β-hydroxytestosterone, and 7-HC sulfate, were predominantly formed in the ileum, while 15α-hydroxytestosterone and 7-HC glucuronide were mainly produced in the colon. Moreover, we also observed sex differences in phase II metabolite formation, which appeared to be higher in males as compared to females. Taken together, we demonstrated that phase I metabolism predominantly occurs in ileum PCIS, while phase II metabolism mostly takes place in colon PCIS. Moreover, we revealed that human PCIS can be used to study both regional and sex differences in intestinal metabolism

    The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites

    Get PDF
    Although there has been increasing interest in the use of high protein diets, little is known about dietary protein related changes in the mammalian metabolome. We investigated the influence of protein intake on selected tryptophan and phenolic compounds, derived from both endogenous and colonic microbial metabolism. Furthermore, potential inter-species metabolic differences were studied. For this purpose, 29 healthy subjects were allocated to a high (n = 14) or low protein diet (n = 15) for 2 weeks. In addition, 20 wild-type FVB mice were randomized to a high protein or control diet for 21 days. Plasma and urine samples were analyzed with liquid chromatography-mass spectrometry for measurement of tryptophan and phenolic metabolites. In human subjects, we observed significant changes in plasma level and urinary excretion of indoxyl sulfate (P 0.004 and P 0.001), and in urinary excretion of indoxyl glucuronide (P 0.01), kynurenic acid (P 0.006) and quinolinic acid (P 0.02). In mice, significant differences were noted in plasma tryptophan (P 0.03), indole-3-acetic acid (P 0.02), p-cresyl glucuronide (P 0.03), phenyl sulfate (P 0.004) and phenylacetic acid (P 0.01). Thus, dietary protein intake affects plasma levels and generation of various mammalian metabolites, suggesting an influence on both endogenous and colonic microbial metabolism. Metabolite changes are dissimilar between human subjects and mice, pointing to inter-species metabolic differences with respect to protein intake.status: publishe

    Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide: Implications for chronic kidney disease pathophysiology

    No full text
    The uremic solutes p-cresyl sulfate (pCS) and p-cresyl glucuronide (pCG) accumulate in patients with chronic kidney disease (CKD), and might contribute to disease progression. Moreover, retention of these solutes may directly be related to renal tubular function. Here, we investigated the role of the efflux transporters Multidrug Resistance Protein 4 (MRP4) and Breast Cancer Resistance Protein (BCRP) in pCS and pCG excretion, and studied the impact of both solutes on the phenotype of human conditionally immortalized renal proximal tubule epithelial cells (ciPTEC). Our results show that p-cresol metabolites accumulate during CKD, with a shift from sulfation to glucuronidation upon progression. Moreover, pCS inhibited the activity of MRP4 by 40% and BCRP by 25%, whereas pCG only reduced MRP4 activity by 75%. Moreover, BCRP-mediated transport of both solutes was demonstrated. Exposure of ciPTEC to pCG caused epithelial-to-mesenchymal transition, indicated by increased expression of vimentin and Bcl-2, and diminished E-cadherin. This was associated with altered expression of key tubular transporters. In conclusion, BCRP is likely involved in the renal excretion of both solutes, and pCG promotes phenotypical changes in ciPTEC, supporting the notion that uremic toxins may be involved in CKD progression by negatively affecting renal tubule cell phenotype and functionality.publisher: Elsevier articletitle: Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide: Implications for chronic kidney disease pathophysiology journaltitle: Toxicology in Vitro articlelink: http://dx.doi.org/10.1016/j.tiv.2015.07.020 content_type: article copyright: Copyright © 2015 Elsevier Ltd. All rights reserved.status: publishe

    Dexamethasone enhances oxidative stress-induced cell death in murine neural stem cells

    No full text
    Contains fulltext : 110873.pdf (publisher's version ) (Closed access)Glucocorticoids (GCs) are essential for normal brain development; however, there is consistent evidence that prenatal exposure of the fetal brain to excess GCs permanently modifies the phenotype of neuronal cells. In this paper, the murine-derived multipotent stem cell line C17.2 was used, as an in vitro model, to investigate the impact of GCs on neural stem cell survival. Our results indicate that dexamethasone (Dex) increases the sensitivity of murine neural stem cells (NSCs) to 2,3-methoxy-1,4-naphthoquinone-induced apoptosis, and this effect could be blocked by the glucocorticoid-receptor (GR) antagonist mifepristone, strongly suggesting the involvement of the GR. Furthermore, our results show that Dex decreases cell number and induces a G1-arrest. We hypothesized that the mitochondria are the main target of Dex. Interestingly, after treatment with Dex, 72% of the investigated genes involved in the mitochondrial respiratory chain are down-regulated, as well as 29% of the genes encoding for antioxidant enzymes. In conclusion, using the C17.2 cell line as a model to study developmental neurotoxicity in vitro, we have shown that GCs can increase cellular sensitivity to oxidative stress and alter the phenotype of NCSs
    corecore