48 research outputs found

    Transport of the Photodynamic Therapy Agent 5-Aminolevulinic Acid by Distinct H ϩ -Coupled Nutrient Carriers Coexpressed in the Small Intestine

    Get PDF
    ABSTRACT 5-Aminolevulinic acid (ALA) is a prodrug used in photodynamic therapy, fluorescent diagnosis, and fluorescent-guided resection because it leads to accumulation of the photosensitizer protoporphyrin IX (PpIX) in tumor tissues. ALA has good oral bioavailability, but high oral doses are required to obtain selective PpIX accumulation in colonic tumors because accumulation is also observed in normal gut mucosa. Structural similarities between ALA and GABA led us to test the hypothesis that the H ϩ -coupled amino acid transporter PAT1 (SLC36A1) will contribute to luminal ALA uptake. Radiolabel uptake and electrophysiological measurements identified PAT1-mediated H ϩ -coupled ALA symport after heterologous expression in Xenopus oocytes. The selectivity of the nontransported inhibitors 5-hydroxytryptophan and 4-aminomethylbenzoic acid for, respectively, PAT1 and the H ϩ -coupled di/tripeptide transporter PepT1 (SLC15A1) were examined. 5-Hydroxytryptophan selectively inhibited PAT1-mediated amino acid uptake across the brush-border membrane of the human intestinal (Caco-2) epithelium whereas 4-aminomethylbenzoic acid selectively inhibited PepT1-mediated dipeptide uptake. The inhibitory effects of 5-hydroxytryptophan and 4-aminomethylbenzoic acid were additive, demonstrating that both PAT1 and PepT1 contribute to intestinal transport of ALA. This is the first demonstration of overlap in substrate specificity between these distinct transporters for amino acids and dipeptides. PAT1 and PepT1 expression was monitored by reverse transcriptase-polymerase chain reaction using paired samples of normal and cancer tissue from human colon. mRNA for both transporters was detected. PepT1 mRNA was increased 2.3-fold in cancer tissues. Thus, increased PepT1 expression in colonic cancer could contribute to the increased PpIX accumulation observed. Selective inhibition of PAT1 could enhance PpIX loading in tumor tissue relative to that in normal tissue

    Insulin-like growth factor 1 attenuates antiestrogen- and antiprogestin-induced apoptosis in ER+ breast cancer cells by MEK1 regulation of the BH3-only pro-apoptotic protein Bim

    Get PDF
    Abstract Introduction In this pre-clinical in vitro study conducted in estrogen receptor positive (ER+) breast cancer cells, we have characterized the effects of insulin-like growth factor I (IGF-1) on the cytostatic and cytotoxic action of antiestrogen treatment when used as a single agent or in combination with the antiprogestin mifepristone (MIF). Our goal was to identify new molecular targets to improve the efficacy of hormonal therapy in breast cancer patients that have a poor response to hormonal therapy, in part, due to high circulating levels of unbound insulinIGF-1. Methods IGF-1-mediated effects on cytostasis and apoptotic cell death were determined with cell counts conducted in the presence and absence of trypan blue; enzyme-linked immunosorbent assays to determine the intracellular levels of cleaved cytokeratin 18, a marker of epithelial cancer cell apoptosis; and immunoblot analysis to determine the levels of cleaved poly-ADP ribose polymerase (PARP) and lamin A that result from caspase-dependent apoptosis. Cytotoxicity was further characterized by determination of the levels of reactive oxygen species (ROS) and the percent of mitochondrial membrane depolarization in cell populations treated with the different hormones in the presence and absence of IGF-1. Small molecule inhibitors of the dual-specificity protein kinase MEK1, MEK1 siRNA, Bim siRNA, and vectors overexpressing MEK1 wild type and mutant, dominant negative cDNA were used to identify key IGF-1 downstream prosurvival effectors. Results IGF-1, at physiologically relevant levels, blocked the cytotoxic action(s) of the antiestrogens 4-hydroxytamoxifen (4-OHT) and tamoxifen (TAM) when used as single agents or in combination with the antiprogestin MIF. The antiapoptotic action of IGF-1 was mediated primarily through the action of MEK1. MEK1 expression reduced the levels of ROS and mitochondrial membrane depolarization induced by the hormonal treatments via a mechanism that involved the phosphorylation and proteasomal turnover of the proapoptotic BH3-only Bcl-2 family member Bim. Importantly, small-molecule inhibitors of MEK1 circumvented the prosurvival action of IGF-1 by restoring Bim to levels that more effectively mediated apoptosis in ER+ breast cancer cells. Conclusion his study provides strong support for the use of MEK1 inhibitors in combination with hormonal therapy to effectively affect cytostasis and activate a Bim-dependent apoptotic pathway in ER+ breast cancer cells. We discuss that MEK1 blockade may be a particularly effective treatment for women with high circulating levels of IGF-1, which have been correlated to a poor prognosis

    Oral Pathobiont Activates Anti-Apoptotic Pathway, Promoting both Immune Suppression and Oncogenic Cell Proliferation.

    Get PDF
    Chronic periodontitis (CP) is a microbial dysbiotic disease linked to increased risk of oral squamous cell carcinomas (OSCCs). To address the underlying mechanisms, mouse and human cell infection models and human biopsy samples were employed. We show that the \u27keystone\u27 pathogen Porphyromonas gingivalis, disrupts immune surveillance by generating myeloid-derived dendritic suppressor cells (MDDSCs) from monocytes. MDDSCs inhibit CTLs and induce FOXP3 + 

    Sodium-coupled Monocarboxylate Transporters in Normal Tissues and in Cancer

    Get PDF
    SLC5A8 and SLC5A12 are sodium-coupled monocarboxylate transporters (SMCTs), the former being a high-affinity type and the latter a low-affinity type. Both transport a variety of monocarboxylates in a Na+-coupled manner. They are expressed in the gastrointestinal tract, kidney, thyroid, brain, and retina. SLC5A8 is localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to neurons and the retinal pigment epithelium. The physiologic functions of SLC5A8 include absorption of short-chain fatty acids in the colon and small intestine, reabsorption of lactate and pyruvate in the kidney, and cellular uptake of lactate and ketone bodies in neurons. It also transports the B-complex vitamin nicotinate. SLC5A12 is also localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to astrocytes and Müller cells. SLC5A8 also functions as a tumor suppressor; its expression is silenced in tumors of colon, thyroid, stomach, kidney, and brain. The tumor-suppressive function is related to its ability to mediate concentrative uptake of butyrate, propionate, and pyruvate, all of which are inhibitors of histone deacetylases. SLC5A8 can also transport a variety of pharmacologically relevant monocarboxylates, including salicylates, benzoate, and γ-hydroxybutyrate. Non-steroidal anti-inflammatory drugs such as ibuprofen, ketoprofen, and fenoprofen, also interact with SLC5A8. These drugs are not transportable substrates for SLC5A8, but instead function as blockers of the transporter. Relatively less is known on the role of SLC5A12 in drug transport

    Development and standardization of cyst based liquid formulation of Azospirillum bioinoculant

    No full text
    Azospirillum bioinoculant is well known for its high nitrogen fixing and plant growth promoting characters. The carrier based bioinoculants generally suffer from shorter shelf life, poor quality, high contamination and low field performance. Therefore, it is necessary to develop alternative new formulation of inoculants where cyst based inoculants can play significant role. The cyst based liquid formulation was developed by inoculating Azospirillum into the cyst inducing minimal salts medium (MSM). One hundred per cent conversion of vegetative cells into cyst cells was noticed in 96 h. The survival of cyst cells in the MSM was observed up to one year and two months and interestingly, the population level of 10 8 was maintained till the final observation. The cyst cells of Azospirillum accumulated poly- β -hydroxybutyrate (PHB) granules and exhibited desiccation tolerance up to 20 days and temperature tolerance up to 40 °C. Thus the cyst based liquid formulation has twin advantage of longer shelf life and tolerance to harmful environmental conditions. Regeneration of cyst cells into vegetative cells in different media viz., tap water, sterile water, rice gruel and nutrient broth was studied. The changes started within 3 h and complete return of vegetative cells was observed at 24 h. Although all the media tested favoured regeneration, comparatively quicker regeneration was observed in nutrient broth and followed by rice gruel. Thus, cyst based liquid formulation of Azospirillum has all the survival advantages and can be used as a potential bioinoculant

    Ursolic Acid Analogs as Potential Therapeutics for Cancer

    No full text
    Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades
    corecore