121 research outputs found

    The Role of Antimicrobial Peptides as Antimicrobial and Antibiofilm Agents in Tackling the Silent Pandemic of Antimicrobial Resistance

    Get PDF
    Just over a million people died globally in 2019 due to antibiotic resistance caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The World Health Organization (WHO) also lists antibiotic-resistant Campylobacter and Helicobacter as bacteria that pose the greatest threat to human health. As it is becoming increasingly difficult to discover new antibiotics, new alternatives are needed to solve the crisis of antimicrobial resistance (AMR). Bacteria commonly found in complex communities enclosed within self-produced matrices called biofilms are difficult to eradicate and develop increased stress and antimicrobial tolerance. This review summarises the role of antimicrobial peptides (AMPs) in combating the silent pandemic of AMR and their application in clinical medicine, focusing on both the advantages and disadvantages of AMPs as antibiofilm agents. It is known that many AMPs display broad-spectrum antimicrobial activities, but in a variety of organisms AMPs are not stable (short half-life) or have some toxic side effects. Hence, it is also important to develop new AMP analogues for their potential use as drug candidates. The use of one health approach along with developing novel therapies using phages and breakthroughs in novel antimicrobial peptide synthesis can help us in tackling the problem of AMR

    Eco-friendly green synthesis of copper nanoparticles from Tinospora cordifolia leaves:optical properties with biological evaluation of anti-microbial, anti-inflammatory and anti-oxidant applications

    Get PDF
    The increased use of medicinal plants has raised questions regarding their safety, efficacy, and utility. Since a result, a thorough understanding of plant phytochemical components is essential, since this information will be useful in the development of innovative therapeutic medications. Copper nanoparticles (CuNPs) have received a lot of interest due to their numerous applications. The physical and chemical features of CuNPs influence their uses. In the current study, CuNPs were synthesised utilising the chemical reduction process, with Tinospora cordifolia extract serving as a reducing agent due to their high phenolic and flavonoid content and their antibacterial and anti-inflammatory properties were also assessed. The majority of the absorption peaks found in the T. cordifolia leaves extract can also be found in the FT-IR spectrum of CuNPs, often at the same locations or with just little variations in the peak’s location and intensity. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) found that the particles were generally spherical, with an average particle size of 15 to 70 nm. Their potential as anti-bacterial and antifungal drugs was demonstrated by the antimicrobial activity, they exhibited against S. aureus (18 mm), L. bacillus (22 mm), S. mutans (24 mm), and C. albicans (15 mm). Studies on the anti-inflammatory properties of biologically produced Cu NPs were determined.</p

    Species, Risk Factors, and Antimicrobial Susceptibility Profiles of Bacterial Isolates from HIV-Infected Patients Suspected to Have Pneumonia in Mekelle Zone, Tigray, Northern Ethiopia

    Get PDF
    Data Availability Data supporting the conclusions of this article are available by request from G. Adhanom. The relevant raw data will be made available to researchers wishing to use them for noncommercial purposes. Acknowledgments The authors would like to acknowledge Mekelle University for financing and allowing the laboratory space and materials to conduct the laboratory work. All ART clinics of Mekelle zone and all study participants are acknowledged for their willingness to participate in this study. This work was supported by Mekelle University, College of Health Sciences, Postgraduate Students Research fund.Peer reviewedPublisher PD

    Penicillium chrysogenum-Derived Silver Nanoparticles: Explorationof Their Antibacterial and Biofilm Inhibitory Activity Againstthe Standard and Pathogenic Acinetobacter baumannii Compared to Tetracycline

    Get PDF
    Abstract: This study was aimed to evaluate the antibacterial and biofilm inhibitory activity of Penicillium chrysogenum-derivedsilver nanoparticles (AgNPs) against the standard and pathogenic Acinetobacter baumannii using a 96-well microtiterplate-based method. The AgNPs were characterized by using UV–Vis, TEM, AFM, XRD, DLS, Zeta potential, and FT-IR.The nanoparticles (NPs) were fabricated with a spherical shape and an average hydrodynamic diameter of 48.2 nm. Theminimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNPs were found to be 4and 32 lg/mL respectively, whereas the MIC and MBC of tetracycline were found to be 1024 and 8192 lg/mL against A.baumannii (ATCC 19606). The AgNPs and tetracycline represented considerable biofilm inhibitory activity against boththe standard and pathogenic A. baumannii at the studied concentrations. However, the AgNPs depicted higher potency toinhibit the process of biofilm formation of some pathogenic A. baumannii species compared to tetracycline. The AgNPs atthe concentration of 0.5*MIC (2 lg/mL) inhibited above 90% biofilm inhibition, whereas tetracycline reached 90% biofilminhibition at the concentration of 4*MIC (4096 lg/mL) against A. baumannii (ATCC 19606). However, further studies arerequired to evaluate the biofilm inhibitory efficacy of biogenic AgNPs in vivo. Keywords: Silver nanoparticles, Biosynthesis, Antibacterial activity, Biofilm inhibitory activit

    HIV prevalence and risk factors in infants born to HIV positive mothers, measured by dried blood spot real-time PCR assay in Tigray, Northern Ethiopia

    Get PDF
    Tigray Regional Health Bureau and Mekelle University funding for this research. The funding body did not have any role in study design, data collection, analysis, and interpretation of data or in writing the manuscript.Peer reviewedPublisher PD

    Induction of Caspase-Mediated Apoptosis in HepG2 Liver Carcinoma Cells Using Mutagen–Antioxidant Conjugated Self-Assembled Novel Carbazole Nanoparticles and In Silico Modeling Studies

    Get PDF
    In this study, novel self-assembled carbazole-thiooctanoic acid nanoparticles (CTNs) were synthesized from amino carbazole (a mutagen) and thiooctanoic acid (an antioxidant). The nanoparticles were characterized using hyperspectral techniques. Then, the antiproliferative potential of CTNs was determined in HepG2 liver carcinoma cells. This study employed a solvent-antisolvent interaction method to synthesize a spherical CTN of size less than 50 nm. Moreover, CT was subsequently capped to gold nanoparticles (AuNPs) in the additional comparative studies. The CT derivative was synthesized from carbazole and lipoic acid by the amide bond formation reaction using a coupling agent. Furthermore, it was characterized using infrared (IR), 1H nuclear magnetic resonance, dynamic light scattering (DLS), and transmission electron microscopy techniques. The CT-capped gold nanoparticles (CTAuNPs) were prepared from CT, chloroauric acid, and NaBH4. The CTAuNPs were characterized using ultraviolet-visible, high-resolution TEM, DLS, and Fourier transform IR techniques. The cytotoxicity and apoptosis-inducing ability of both nanoparticles were determined in HepG2 cells. The results demonstrate that CTNs exhibit antiproliferative activity in the cancerous HepG2 cells. Moreover, molecular docking and molecular dynamics studies were conducted to explore the therapeutic potential of CT against human EGFR suppressor protein to gain more insights into the binding mode of the CT, which may show a significant role in anticancer therapy

    Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2.5 air pollution, 1990-2019 : an analysis of data from the Global Burden of Disease Study 2019

    Get PDF
    Background Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2.5 originating from ambient and household air pollution.Methods We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2.5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure-response curve from the extracted relative risk estimates using the MR-BRT (meta-regression-Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2.5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2.5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals.Findings In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2.5 exposure, with an estimated 3.78 (95% uncertainty interval 2.68-4.83) deaths per 100 000 population and 167 (117-223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13.4% (9.49-17.5) of deaths and 13.6% (9.73-17.9) of DALYs due to type 2 diabetes were contributed by ambient PM2.5, and 6.50% (4.22-9.53) of deaths and 5.92% (3.81-8.64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2.5.Interpretation Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2.5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2.5 air pollution, 1990-2019 : An analysis of data from the Global Burden of Disease Study 2019

    Get PDF
    Background Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2·5 originating from ambient and household air pollution. Methods We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2·5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure–response curve from the extracted relative risk estimates using the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2·5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2·5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals. Findings In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2·5 exposure, with an estimated 3·78 (95% uncertainty interval 2·68–4·83) deaths per 100 000 population and 167 (117–223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13·4% (9·49–17·5) of deaths and 13·6% (9·73–17·9) of DALYs due to type 2 diabetes were contributed by ambient PM2·5, and 6·50% (4·22–9·53) of deaths and 5·92% (3·81–8·64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2·5. Interpretation Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2·5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes

    The unfinished agenda of communicable diseases among children and adolescents before the COVID-19 pandemic, 1990-2019: a systematic analysis of the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Communicable disease control has long been a focus of global health policy. There have been substantial reductions in the burden and mortality of communicable diseases among children younger than 5 years, but we know less about this burden in older children and adolescents, and it is unclear whether current programmes and policies remain aligned with targets for intervention. This knowledge is especially important for policy and programmes in the context of the COVID-19 pandemic. We aimed to use the Global Burden of Disease (GBD) Study 2019 to systematically characterise the burden of communicable diseases across childhood and adolescence. METHODS: In this systematic analysis of the GBD study from 1990 to 2019, all communicable diseases and their manifestations as modelled within GBD 2019 were included, categorised as 16 subgroups of common diseases or presentations. Data were reported for absolute count, prevalence, and incidence across measures of cause-specific mortality (deaths and years of life lost), disability (years lived with disability [YLDs]), and disease burden (disability-adjusted life-years [DALYs]) for children and adolescents aged 0-24 years. Data were reported across the Socio-demographic Index (SDI) and across time (1990-2019), and for 204 countries and territories. For HIV, we reported the mortality-to-incidence ratio (MIR) as a measure of health system performance. FINDINGS: In 2019, there were 3·0 million deaths and 30·0 million years of healthy life lost to disability (as measured by YLDs), corresponding to 288·4 million DALYs from communicable diseases among children and adolescents globally (57·3% of total communicable disease burden across all ages). Over time, there has been a shift in communicable disease burden from young children to older children and adolescents (largely driven by the considerable reductions in children younger than 5 years and slower progress elsewhere), although children younger than 5 years still accounted for most of the communicable disease burden in 2019. Disease burden and mortality were predominantly in low-SDI settings, with high and high-middle SDI settings also having an appreciable burden of communicable disease morbidity (4·0 million YLDs in 2019 alone). Three cause groups (enteric infections, lower-respiratory-tract infections, and malaria) accounted for 59·8% of the global communicable disease burden in children and adolescents, with tuberculosis and HIV both emerging as important causes during adolescence. HIV was the only cause for which disease burden increased over time, particularly in children and adolescents older than 5 years, and especially in females. Excess MIRs for HIV were observed for males aged 15-19 years in low-SDI settings. INTERPRETATION: Our analysis supports continued policy focus on enteric infections and lower-respiratory-tract infections, with orientation to children younger than 5 years in settings of low socioeconomic development. However, efforts should also be targeted to other conditions, particularly HIV, given its increased burden in older children and adolescents. Older children and adolescents also experience a large burden of communicable disease, further highlighting the need for efforts to extend beyond the first 5 years of life. Our analysis also identified substantial morbidity caused by communicable diseases affecting child and adolescent health across the world. FUNDING: The Australian National Health and Medical Research Council Centre for Research Excellence for Driving Investment in Global Adolescent Health and the Bill & Melinda Gates Foundation
    corecore