6 research outputs found

    Review on conductivity enhancement in n-ZnO/p-Si heterojunction diodes with the influence of Rare earth ions as donor impurities.

    Get PDF
    Nanoelectronics is an emerging field of nanotechnology where innumerable nanomaterials are used to fabricate electronic devices like LEDs, Photodiodes, Transistors, FETs, UJTs, SCRs, Laser diodes, etc.  The accomplishment of high-efficiency electronic devices at low cost tends to be the foremost challenging task in the field of nanoelectronics. The p-n heterojunction is a junction of two dissimilar p and n-type crystalline materials with different bandgap energies, work functions and electron affinities.The n-ZnO/p-Si heterojunction device tends to be cost-effective and also potential candidates for integration with microelectronic based photonic and optoelectronic devices. Th electrical properties of n-ZnO/p-Si heterojunction diode can be fine-tuned by the addition of dopants at different concentrations.This article presents a brief overview on the influence of different  rare earth dopants on chargecarrier enhancement and transport mechanism in n-ZnO/p-Si heterojunction diode. This review paper also presents an outline on heterojunction formation theories and applications of n-ZnO/p-Si heterojunction diod

    Synthesis of Bimetallic BiPO4/ZnO Nanocomposite: Enhanced Photocatalytic Dye Degradation and Antibacterial Applications

    No full text
    Multidrug-resistant strains (MDRs) are becoming a major concern in a variety of settings, including water treatment and the medical industry. Well-dispersed catalysts such as BiPO4, ZnO nanoparticles (NPs), and different ratios of BiPO4/ZnO nanocomposites (NCs) were synthesized through hydrothermal treatments. The morphological behavior of the prepared catalysts was characterized using XRD, Raman spectra, PL, UV–Vis diffuse reflectance spectroscopy (UV-DRS), SEM, EDX, and Fe-SEM. MDRs were isolated and identified by the 16s rDNA technique as belonging to B. flexus, B. filamentosus, P. stutzeri, and A. baumannii. The antibacterial activity against MDRs and the photocatalytic methylene blue (MB) dye degradation activity of the synthesized NPs and NCs were studied. The results demonstrate that the prepared BiPO4/ZnO-NCs (B1Z4-75:300; NCs-4) caused a maximum growth inhibition of 20 mm against A. baumannii and a minimum growth inhibition of 12 mm against B. filamentosus at 80 μg mL−1 concentrations of the NPs and NCs. Thus, NCs-4 might be a suitable alternative to further explore and develop as an antibacterial agent. The obtained results statistically justified the data (p ≤ 0.05) via one-way analysis of variance (ANOVA). According to the results of the antibacterial and photocatalytic study, we selected the best bimetallic NCs-4 for the photoexcited antibacterial effect of MDRs, including Gram ve+ and Gram ve− strains, via UV light irradiation. The flower-like NCs-4 composites showed more effectiveness than those of BiPO4, ZnO, and other ratios of NCs. The results encourage the development of flower-like NCs-4 to enhance the photocatalytic antibacterial technique for water purification

    Synthesis of Bimetallic BiPO<sub>4</sub>/ZnO Nanocomposite: Enhanced Photocatalytic Dye Degradation and Antibacterial Applications

    No full text
    Multidrug-resistant strains (MDRs) are becoming a major concern in a variety of settings, including water treatment and the medical industry. Well-dispersed catalysts such as BiPO4, ZnO nanoparticles (NPs), and different ratios of BiPO4/ZnO nanocomposites (NCs) were synthesized through hydrothermal treatments. The morphological behavior of the prepared catalysts was characterized using XRD, Raman spectra, PL, UV–Vis diffuse reflectance spectroscopy (UV-DRS), SEM, EDX, and Fe-SEM. MDRs were isolated and identified by the 16s rDNA technique as belonging to B. flexus, B. filamentosus, P. stutzeri, and A. baumannii. The antibacterial activity against MDRs and the photocatalytic methylene blue (MB) dye degradation activity of the synthesized NPs and NCs were studied. The results demonstrate that the prepared BiPO4/ZnO-NCs (B1Z4-75:300; NCs-4) caused a maximum growth inhibition of 20 mm against A. baumannii and a minimum growth inhibition of 12 mm against B. filamentosus at 80 μg mL−1 concentrations of the NPs and NCs. Thus, NCs-4 might be a suitable alternative to further explore and develop as an antibacterial agent. The obtained results statistically justified the data (p ≤ 0.05) via one-way analysis of variance (ANOVA). According to the results of the antibacterial and photocatalytic study, we selected the best bimetallic NCs-4 for the photoexcited antibacterial effect of MDRs, including Gram ve+ and Gram ve− strains, via UV light irradiation. The flower-like NCs-4 composites showed more effectiveness than those of BiPO4, ZnO, and other ratios of NCs. The results encourage the development of flower-like NCs-4 to enhance the photocatalytic antibacterial technique for water purification
    corecore