153 research outputs found

    Simple sequence proteins in prokaryotic proteomes

    Get PDF
    BACKGROUND: The structural and functional features associated with Simple Sequence Proteins (SSPs) are non-globularity, disease states, signaling and post-translational modification. SSPs are also an important source of genetic and possibly phenotypic variation. Analysis of 249 prokaryotic proteomes offers a new opportunity to examine the genomic properties of SSPs. RESULTS: SSPs are a minority but they grow with proteome size. This relationship is exhibited across species varying in genomic GC, mutational bias, life style, and pathogenicity. Their proportion in each proteome is strongly influenced by genomic base compositional bias. In most species simple duplications is favoured, but in a few cases such as Mycobacteria, large families of duplications occur. Amino acid preference in SSPs exhibits a trend towards low cost of biosynthesis. In SSPs and in non-SSPs, Alanine, Glycine, Leucine, and Valine are abundant in species widely varying in genomic GC whereas Isoleucine and Lysine are rich only in organisms with low genomic GC. Arginine is abundant in SSPs of two species and in the non-SSPs of Xanthomonas oryzae. Asparagine is abundant only in SSPs of low GC species. Aspartic acid is abundant only in the non-SSPs of Halobacterium sp NRC1. The abundance of Serine in SSPs of 62 species extends over a broader range compared to that of non-SSPs. Threonine(T) is abundant only in SSPs of a couple of species. SSPs exhibit preferential association with Cell surface, Cell membrane and Transport functions and a negative association with Metabolism. Mesophiles and Thermophiles display similar ranges in the content of SSPs. CONCLUSION: Although SSPs are a minority, the genomic forces of base compositional bias and duplications influence their growth and pattern in each species. The preferences and abundance of amino acids are governed by low biosynthetic cost, evolutionary age and base composition of codons. Abundance of charged amino acids Arginine and Aspartic acid is severely restricted. SSPs preferentially associate with cell surface and interface functions as opposed to metabolism, wherein proteins of high sequence complexity with globular structures are preferred. Mesophiles and Thermophiles are similar with respect to the content of SSPs. Our analysis serves to expandthe commonly held views on SSPs

    Managing corneal disease: focus on suppurative keratitis

    Get PDF
    The aim of this article is to review both bacterial and fungal keratitis, with an emphasis on identification and management at the primary, secondary, and tertiary levels. Guidelines for referral will be suggested

    A subset of human limbal epithelial cells with greater nucleus-to-cytoplasm ratio expressing high levels of p63 possesses slow-cycling property

    Get PDF
    Purpose: The purpose of this study was to evaluate the subset of limbal epithelial cells with greater nucleus-to-cytoplasm (N/C) ratio expressing high levels of p63 for their slow-cycling property, a characteristic feature of stem cells (SCs). Methods: Limbal and peripheral corneal explant cultures were pulse labeled with 5-5-bromo-2'-deoxyuridine (BrdU) for 5 days, followed by a period of 3-week chase. Cultured explants were cryosectioned and stained for BrdU. The epithelial cells in the outgrowth and those remaining on the explant were isolated and subjected to cytospin and double immunostaining for BrdU and p63, followed by identification of label-retaining cells (LRCs) and quantification of p63 expression using confocal microscopy. Results: A distinct population of small cells with large N/C ratio expressing high levels of p63 retained the BrdU label after 21-day chase. Further, this population of LRCs, negative for the differentiation marker K3, was observed in the epithelial outgrowth of limbal but not in that of peripheral cornea. LRCs were seen to migrate along the cut edge of limbal explants in culture and were also observed as clusters of small cells in the outgrowth, which contained cells with the ability to form holoclone colonies. Conclusions: These results demonstrate that the small cells with large N/C ratio and high levels of p63 have BrdU label retaining slo-cycling property, thus confirming that these 2 parameters in combination may serve as a precise marker for identification and quantification of ex vivo-expanded limbal SCs. This method would be useful to standardize the optimal culture conditions that can maintain and expand SCs for therapeutic applications

    High expression of p63 combined with a large N/C ratio defines a subset of human limbal epithelial cells: implications on epithelial stem cells

    Get PDF
    Purpose: To characterize human limbal epithelial cells based on the expression levels of nuclear protein p63 and the nucleus-to-cytoplasm (N/C) ratio. Methods: Limbal, peripheral, and central corneal epithelia were separated from the stroma by Dispase II and subsequently were treated with trypsin to obtain single-cell suspensions. Cytospin smears of the cell suspensions were double immunostained for p63 and then stained for any one of the markers (acidic cytokeratins [AE1], K5, K3, or connexin 43 [C×43]). They were counterstained with propidium iodide. More than 100 cells from each zone were analyzed for p63 expression levels and nuclear/cellular area using quantitative confocal microscopy. Results: A gradient of p63-positive cells was observed in corneal and limbal epithelial cells. The percentage of p63-positive cells and the level of p63 expression were significantly higher in the limbal than in the peripheral or central corneal epithelium. Two-parameter (p63 levels and N/C ratio) analysis revealed the presence of a distinct population of small cells with higher levels of p63 and a large N/C ratio in the limbal epithelium. Such limbal epithelial cells were positive for AE1 and K5 but negative for K3 and C×43. Conclusions: These results suggest that this distinct group of small cells in the limbal epithelium with greater N/C ratio, expressing high levels of nuclear protein p63, probably represent corneal epithelial stem cells

    Pests and predators of oysters

    Get PDF
    In all aquaculture practices the detrimental effects of cohabiting organisms are either by predation, competition, disease or parasitism. Hanson (1974) stated that limited predation can serve to weed out some diseased members of a crop and also help in controlling epizootic infections. But large-scale mortalities result in economic loss by reduction in the tended stock. Control of predation also means additional expense on the production cost (Mackenzie, 1970a). While evolving culture methods for fish or shellfish, identifying and proper use of methods to prevent and control numerous predators of cultivable organisms is absolutely essential to maximise production

    Cytotoxic clinical isolates of Pseudomonas aeruginosa identified during the Steroids for Corneal Ulcers Trial show elevated resistance to fluoroquinolones.

    Get PDF
    BackgroundTo determine the relationship between type three secretion genotype and fluoroquinolone resistance for P. aeruginosa strains isolated from microbial keratitis during the Steroids for Corneal Ulcers Trial (SCUT) and for two laboratory strains, PA103 and PAO1.MethodsConfirmed P. aeruginosa isolates from the SCUT were divided into exoU(+) or exoU(-). The exoU(+) strains contained the gene encoding ExoU, a powerful phospholipase toxin delivered into host cells by the type three secretion system. Isolates were then assessed for susceptibility to fluoroquinolone, cephalosporin, and aminoglycoside antibiotics using disk diffusion assays. Etest was used to determine the MIC of moxifloxacin and other fluoroquinolones. Laboratory isolates in which the exoU gene was added or deleted were also tested.ResultsA significantly higher proportion of exoU(+) strains were resistant to ciprofloxacin (p = 0.001), gatifloxacin (p = 0.003), and ofloxacin (p = 0.002) compared to exoU(-) isolates. There was no significant difference between exoU(+) or exoU(-) negative isolates with respect to susceptibility to other antibiotics except gentamicin. Infections involving resistant exoU(+) strains trended towards worse clinical outcome. Deletion or acquisition of exoU in laboratory isolates did not affect fluoroquinolone susceptibility.ConclusionsFluoroquinolone susceptibility of P. aeruginosa isolated from the SCUT is consistent with previous studies showing elevated resistance involving exoU encoding (cytotoxic) strains, and suggest worse clinical outcome from infections involving resistant isolates. Determination of exoU expression in clinical isolates of P. aeruginosa may be helpful in directing clinical management of patients with microbial keratitis

    Cytotoxic Clinical Isolates of Pseudomonas Aeruginosa Identified During the Steroids for Corneal Ulcers Trial Show Elevated Resistance to Fluoroquinolones

    Get PDF
    Background: To determine the relationship between type three secretion genotype and fluoroquinolone resistance for P. aeruginosa strains isolated from microbial keratitis during the Steroids for Corneal Ulcers Trial (SCUT) and for two laboratory strains, PA103 and PAO1. Methods: Confirmed P. aeruginosa isolates from the SCUT were divided into exoU(+) or exoU(−). The exoU(+) strains contained the gene encoding ExoU, a powerful phospholipase toxin delivered into host cells by the type three secretion system. Isolates were then assessed for susceptibility to fluoroquinolone, cephalosporin, and aminoglycoside antibiotics using disk diffusion assays. Etest was used to determine the MIC of moxifloxacin and other fluoroquinolones. Laboratory isolates in which the exoU gene was added or deleted were also tested. Results: A significantly higher proportion of exoU(+) strains were resistant to ciprofloxacin (p = 0.001), gatifloxacin (p = 0.003), and ofloxacin (p = 0.002) compared to exoU(−) isolates. There was no significant difference between exoU(+) or exoU(−) negative isolates with respect to susceptibility to other antibiotics except gentamicin. Infections involving resistant exoU(+) strains trended towards worse clinical outcome. Deletion or acquisition of exoU in laboratory isolates did not affect fluoroquinolone susceptibility. Conclusions: Fluoroquinolone susceptibility of P. aeruginosa isolated from the SCUT is consistent with previous studies showing elevated resistance involving exoU encoding (cytotoxic) strains, and suggest worse clinical outcome from infections involving resistant isolates. Determination of exoU expression in clinical isolates of P. aeruginosa may be helpful in directing clinical management of patients with microbial keratitis

    Prospective comparison of microbial culture and polymerase chain reaction in the diagnosis of corneal ulcer.

    No full text
    PURPOSE: To compare polymerase chain reaction (PCR) to microbial culture for the detection and identification of bacterial and fungal pathogens in microbial keratitis. DESIGN: Prospective cohort study. METHODS: A total of 108 consecutive corneal ulcers were cultured and analyzed by PCR using pan-bacterial and pan-fungal primers. PCR products were cloned, sequenced, and compared to culture results using standard bioinformatics tools. RESULTS: Of the 108 samples, 56 were culture-positive, 25 for bacteria and 31 for fungi; 52 were culture-negative. After eliminating false-positive PCR products, 94 of 108 were positive by PCR, 37 for bacteria and 57 for fungi. Nineteen of 25 bacterial culture-positive samples were positive by PCR, and 29 of 31 samples culture-positive for fungi were positive by PCR. The majority of sequenced PCR products matched the positive culture results. Of the 52 culture-negative samples, 46 (88%) yielded pathogen deoxyribonucleic acid (DNA) PCR products, 18 bacterial and 28 fungal. These represented a variety of species, including at least three novel previously uncultured microbes. CONCLUSIONS: PCR detects microbial DNA in the majority of bacterial and fungal corneal ulcers, and identifies potentially pathogenic organisms in a high proportion of culture-negative cases. Yield and concordance with culture are higher for fungal than bacterial ulcers. Practical use of the technique is limited by artefactual amplification of nonpathogenic organisms. PCR may be used as an adjunct to culture to identify potential pathogens in microbial keratitis

    Electronic and Geometric Structures of Rechargeable Lithium Manganese Sulfate Li2Mn(SO4)2 Cathode

    Get PDF
    Here, we report the use of Li2Mn(SO4)2 as a potential energy storage material and describe its route of synthesis and structural characterization over one electrochemical cycle. Li2Mn(SO4)2 is synthesized by ball milling of MnSO4·H2O and Li2SO4·H2O and characterized using a suite of techniques, in particular, ex situ X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy on the Mn and S K-edges to investigate the electronic and local geometry around the absorbing atoms. The prepared Li2Mn-(SO4)2 electrodes undergo electrochemical cycles to different potential points on the charge−discharge curve and are then extracted from the cells at these points for ex situ structural analysis. Analysis of X-ray absorption spectroscopy (both near and fine structure part of the data) data suggests that there are minimal changes to the oxidation state of Mn and S ions during charge−discharge cycles. However, X-ray photoelectron spectroscopy analysis suggests that there are changes in the oxidation state of Mn, which appears to be different from the conclusion drawn from X-ray absorption spectroscopy. This difference in results during cycling can thus be attributed to electrochemical reactions being dominant at the surface of the Li2Mn(SO4)2 particles rather than in the bulk
    corecore