28 research outputs found

    Multiomics links global surfactant dysregulation with airflow obstruction and emphysema in COPD

    Get PDF
    RATIONALE: Pulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent alveolar collapse and provides essential immune-regulatory and antipathogenic functions. Previous studies demonstrated dysregulation of some individual surfactant components in COPD. We investigated relationships between COPD disease measures and dysregulation of surfactant components to gain new insights into potential disease mechanisms. METHODS: Bronchoalveolar lavage proteome and lipidome were characterised in ex-smoking mild/moderate COPD subjects (n=26) and healthy ex-smoking (n=20) and never-smoking (n=16) controls using mass spectrometry. Serum surfactant protein analysis was performed. RESULTS: Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, surfactant protein (SP)-B, SP-A and SP-D concentrations were lower in COPD versus controls (log2 fold change (log2FC) -2.0, -2.2, -1.5, -0.5, -0.7 and -0.5 (adjusted p<0.02), respectively) and correlated with lung function. Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D, napsin A and CD44 inversely correlated with computed tomography small airways disease measures (expiratory to inspiratory mean lung density) (r= -0.56, r= -0.58, r= -0.45, r= -0.36, r= -0.44, r= -0.37, r= -0.40 and r= -0.39 (adjusted p<0.05)). Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D and NAPSA inversely correlated with emphysema (% low-attenuation areas): r= -0.55, r= -0.61, r= -0.48, r= -0.51, r= -0.41, r= -0.31 and r= -0.34, respectively (adjusted p<0.05). Neutrophil elastase, known to degrade SP-A and SP-D, was elevated in COPD versus controls (log2FC 0.40, adjusted p=0.0390), and inversely correlated with SP-A and SP-D. Serum SP-D was increased in COPD versus healthy ex-smoking volunteers, and predicted COPD status (area under the curve 0.85). CONCLUSIONS: Using a multiomics approach, we demonstrate, for the first time, global surfactant dysregulation in COPD that was associated with emphysema, giving new insights into potential mechanisms underlying the cause or consequence of disease

    Unexplored therapeutic opportunities in the human genome

    Get PDF
    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved

    Evaluation of FOXO1 target engagement using a single-cell microfluidic platform

    No full text
    The cellular thermal shift assay (CETSA) has been used extensively since its introduction to study drug–target engagement within both live cells and cellular lysate. This has proven to be a useful tool in early stage drug discovery and is used to study a wide range of protein classes. We describe the application of a single-cell CETSA workflow within a microfluidic affinity capture (MAC) chip. This has enabled us to quantitatively determine the active FOXO1 single-molecule count and observe FOXO1 stabilization and destabilization in the presence of three small molecule inhibitors, including demonstrating the determination of EC50. The successful use of the MAC chip for single-cell CETSA paves the way for the study of precious clinical samples owing to the low number of cells needed by the chip. It also provides a useful tool for studying any underlying population heterogeneity that exists within a cellular system, a feature that is usually masked when conducting ensemble measurements

    Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a fatal disorder characterised by progressive, destructive lung scarring. Despite significant progress, the genetic determinants of this disease remain incompletely defined. Using next generation sequencing data from 752 individuals with sporadic IPF and 119,055 controls, we performed both variant- and gene-level analyses to identify novel IPF genetic risk factors. Our variant-level analysis revealed a novel rare missense variant in SPDL1 (NM_017785.5 p.Arg20Gln; p = 2.4 × 10 −7 , odds ratio = 2.87). This signal was independently replicated in the FinnGen cohort (combined p = 2.2 × 10 −20 ), firmly associating this variant as a novel IPF risk allele. SPDL1 encodes Spindly, a protein involved in mitotic checkpoint signalling during cell division that has not been previously described in fibrosis. Our results highlight a novel mechanism underlying IPF, providing the potential for new therapeutic discoveries in a disease of great unmet need

    Fungal dysbiosis and intestinal inflammation in children with beta-cell autoimmunity

    No full text
    Abstract Although gut bacterial dysbiosis is recognized as a regulator of beta-cell autoimmunity, no data is available on fungal dysbiosis in the children at the risk of type 1 diabetes (T1D). We hypothesized that the co-occurrence of fungal and bacterial dysbiosis contributes to the intestinal inflammation and autoimmune destruction of insulin-producing beta-cells in T1D. Fecal and blood samples were collected from 26 children tested positive for at least one diabetes-associated autoantibody (IAA, GADA, IA-2A or ICA) and matched autoantibody-negative children with HLA-conferred susceptibility to T1D (matched for HLA-DQB1 haplotype, age, gender and early childhood nutrition). Bacterial 16S and fungal ITS2 sequencing, and analyses of the markers of intestinal inflammation, namely fecal human beta-defensin-2 (HBD2), calprotectin and secretory total IgA, were performed. Anti-Saccharomyces cerevisiae antibodies (ASCA) and circulating cytokines, IFNG, IL-17 and IL-22, were studied. After these analyses, the children were followed for development of clinical T1D (median 8 years and 8 months). Nine autoantibody positive children were diagnosed with T1D, whereas none of the autoantibody negative children developed T1D during the follow-up. Fungal dysbiosis, characterized by high abundance of fecal Saccharomyces and Candida, was found in the progressors, i.e., children with beta-cell autoimmunity who during the follow-up progressed to clinical T1D. These children showed also bacterial dysbiosis, i.e., increased Bacteroidales and Clostridiales ratio, which was, however, found also in the non-progressors, and is thus a common nominator in the children with beta-cell autoimmunity. Furthermore, the progressors showed markers of intestinal inflammation detected as increased levels of fecal HBD2 and ASCA IgG to fungal antigens. We conclude that the fungal and bacterial dysbiosis, and intestinal inflammation are associated with the development of T1D in children with beta-cell autoimmunity

    An analysis of the attrition of drug candidates from four major pharmaceutical companies

    No full text
    A compilation of attrition data for oral development compounds nominated by four large pharmaceutical companies (AstraZeneca, Eli Lilly, GlaxoSmithkline and Pfizer) in the period 2000 to 2010 has been carried out. It was anticipated that pooling data would help to minimize any issues of inter-company variability as described above and that the larger dataset would increase the chances of observing meaningful relationships. Here, the nature of this compiled dataset and an analysis of the causes of attrition, with a focus on toxicology and safety, are described. The links between these observations and the physical properties of the drug candidates are assesse
    corecore