16 research outputs found

    Urban futures and the code for sustainable homes

    Get PDF
    Copyright © 2012 ICE Publishing Ltd. Permission is granted by ICE Publishing to print one copy for personal use. Any other use of these PDF files is subject to reprint fees.A 6?6 ha (66 000 m2) regeneration site, commonly referred to as Luneside East, is to be turned from a run down, economically under-achieving area of Lancaster, UK, into a new, distinctive, vibrant, sustainable quarter of the city. As a result several aspects of water planning for 350 new homes and 8000 m2 of workspace needed to be considered before any infrastructure investment was undertaken. This included assessment of the future capacity requirements (i.e. inflows and outflows) for water infrastructure (i.e. mains water supply, wastewater disposal, rainwater storage and stormwater disposal) much of which will be located underground. This paper looks at the implications of various water management strategies on the Luneside East site (e.g. water-efficient appliances, greywater recycling and rainwater harvesting) in line with current policy measures that focus on technology changes alone (e.g. the code for sustainable homes). Based on these findings this paper outlines some basic implications for technological resilience discussed in the context of four ‘world views’ – that is, the urban futures scenarios considered in this special issue. Conclusions are drawn as to how far this can take engineers, planners and developers in understanding and planning for resilient water infrastructure within a development like Luneside East

    Assessing the ecological impact of banana farms on water quality using aquatic macroinvertebrate community composition

    Get PDF
    In Costa Rica, considerable effort goes to conservation and protection of biodiversity, while at the same time agricultural pesticide use is among the highest in the world. Several protected areas, some being wetlands or marine reserves, are situated downstream large-scale banana farms, with an average of 57 pesticide applications per year. The banana industry is increasingly aware of the need to reduce their negative environmental impact, but few ecological field studies have been made to evaluate the efficiency of proposed mitigation strategies. This study compared the composition of benthic macroinvertebrate communities up- and downstream effluent water from banana farms in order to assess whether benthic invertebrate community structure can be used to detect environmental impact of banana farming, and thereby usable to assess improvements in management practises. Aquatic invertebrate samples were collected at 13 sites, using kick-net sampling, both up- and downstream banana farms in fast flowing streams in the Caribbean zone of Costa Rica. In total, 2888 invertebrate specimens were collected, belonging to 15 orders and 48 families or taxa. The change in community composition was analysed using multivariate statistics. Additionally, a biodiversity index and the Biological Monitoring Working Party (BMWP) score system was applied along with a number of community composition descriptors. Multivariate analyses indicated that surface waters immediately up- and downstream large-scale banana farms have different macroinvertebrate community compositions with the most evident differences being higher dominance by a single taxa and a much higher total abundance, mostly of that same taxon. Assessment of macroinvertebrate community composition thus appears to be a viable approach to detect negative impact from chemical-intensive agriculture and could become an effective means to monitor the efficacy of changes/proposed improvements in farming practises in Costa Rica and similar systems

    Water conservation Implications of using recycled greywater and stored rainwater in the UK; final report

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:7398.200(13034/1) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore