11 research outputs found

    Global proteomic response of unicellular cyanobacterium Synechocystis sp. PCC 6803 to fluctuating light upon CO2 step-down

    Get PDF
    Photosynthetic cyanobacteria are exposed to rapid changes in light intensity in their natural habitats, as well as in photobioreactors. To understand the effects of such fluctuations on Synechocystis sp. PCC 6803, the global proteome of cells grown under a fluctuating light condition (low background light interrupted with high light pulses) was compared to the proteome of cells grown under constant light with concomitant acclimation of cells to low CO2 level. The untargeted global proteome of Synechocystis sp. PCC 6803 was analyzed by data-dependent acquisition (DDA), which relies on the high mass accuracy and sensitivity of orbitrap-based tandem mass spectrometry. In addition, a targeted selected reaction monitoring (SRM) approach was applied to monitor the proteomic changes in a strain lacking flavodiiron proteins Flv1 and Flv3. This strain is characterized by impaired growth and photosynthetic activity under fluctuating light. An obvious reprogramming of cell metabolism was observed in this study and was compared to a previous transcriptional analysis performed under the same fluctuating light regime. Cyanobacterial responses to fluctuating light correlated at mRNA and protein levels to some extent, but discrepancies indicate that several proteins are post-transcriptionally regulated (affecting observed protein abundances). The data suggest that Synechocystis sp. PCC 6803 maintain higher nitrogen assimilation, serving as an electron valve, for long-term acclimation to fluctuating light upon CO2 step-down. Although Flv1 and Flv3 are known to be crucial for the cells at the onset of illumination, the flavodiiron proteins, as well as components of carbon assimilation pathways, were less abundant under fluctuating light.</p

    Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light

    Get PDF
    Cyanobacterial flavodiiron proteins (FDPs; A-type flavoprotein, Flv) comprise, besides the β-lactamase–like and flavodoxin domains typical for all FDPs, an extra NAD(P)H:flavin oxidoreductase module and thus differ from FDPs in other Bacteria and Archaea. Synechocystis sp. PCC 6803 has four genes encoding the FDPs. Flv1 and Flv3 function as an NAD(P)H:oxygen oxidoreductase, donating electrons directly to O2 without production of reactive oxygen species. Here we show that the Flv1 and Flv3 proteins are crucial for cyanobacteria under fluctuating light, a typical light condition in aquatic environments. Under constant-light conditions, regardless of light intensity, the Flv1 and Flv3 proteins are dispensable. In contrast, under fluctuating light conditions, the growth and photosynthesis of the Δflv1(A) and/or Δflv3(A) mutants of Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 become arrested, resulting in cell death in the most severe cases. This reaction is mainly caused by malfunction of photosystem I and oxidative damage induced by reactive oxygen species generated during abrupt short-term increases in light intensity. Unlike higher plants that lack the FDPs and use the Proton Gradient Regulation 5 to safeguard photosystem I, the cyanobacterial homolog of Proton Gradient Regulation 5 is shown not to be crucial for growth under fluctuating light. Instead, the unique Flv1/Flv3 heterodimer maintains the redox balance of the electron transfer chain in cyanobacteria and provides protection for photosystem I under fluctuating growth light. Evolution of unique cyanobacterial FDPs is discussed as a prerequisite for the development of oxygenic photosynthesis

    Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number

    Get PDF
    Abstract Background Synechocystis sp. PCC 6803 provides a well-established reference point to cyanobacterial metabolic engineering as part of basic photosynthesis research, as well as in the development of next-generation biotechnological production systems. This study focused on expanding the current knowledge on genomic integration of expression constructs in Synechocystis, targeting a range of novel sites in the chromosome and in the native plasmids, together with established loci used in literature. The key objective was to obtain quantitative information on site-specific expression in reference to replicon copy numbers, which has been speculated but never compared side by side in this host. Results An optimized sYFP2 expression cassette was successfully integrated in two novel sites in Synechocystis chromosome (slr0944; sll0058) and in all four endogenous megaplasmids (pSYSM/slr5037-slr5038; pSYSX/slr6037; pSYSA/slr7023; pSYSG/slr8030) that have not been previously evaluated for the purpose. Fluorescent analysis of the segregated strains revealed that the expression levels between the megaplasmids and chromosomal constructs were very similar, and reinforced the view that highest expression in Synechocystis can be obtained using RSF1010-derived replicative vectors or the native small plasmid pCA2.4 evaluated in comparison. Parallel replicon copy number analysis by RT-qPCR showed that the expression from the alternative loci is largely determined by the gene dosage in Synechocystis, thereby confirming the dependence formerly proposed based on literature. Conclusions This study brings together nine different integrative loci in the genome of Synechocystis to demonstrate quantitative differences between target sites in the chromosome, the native plasmids, and a RSF1010-based replicative expression vector. To date, this is the most comprehensive comparison of alternative integrative sites in Synechocystis, and provides the first direct reference between expression efficiency and replicon gene dosage in the context. In the light of existing literature, the findings support the view that the small native plasmids can be notably more difficult to target than the chromosome or the megaplasmids, and that the RSF1010-derived vectors may be surprisingly well maintained under non-selective culture conditions in this cyanobacterial host. Altogether, the work broadens our views on genomic integration and the rational use of different integrative loci versus replicative plasmids, when aiming at expressing heterologous genes in Synechocystis

    Photoprotective auxiliary electron transport pathways in cyanobacteria

    No full text
    Cyanobacteria perform oxygenic photosynthesis to fulfill their energy needs in highly dynamic environmental conditions. This requires tight regulation of photosynthetic light reactions for maintenance and optimization of the photosynthetic performance. In this thesis work, I focus on the auxiliary components assisting in the regulation and protection of photosynthetic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Even though light is essential for photosynthesis, excess excitation energy may lead to the formation of reactive oxygen species (ROS) in reaction centers, electron transfer chain and light harvesting antenna systems. In order to prevent the formation of ROS and subsequent damage to the photosynthetic apparatus, cyanobacteria rely on a number of different photoprotective mechanisms. They control the amount of excitation energy reaching the photosynthetic reaction centers and have a capacity to direct excited electrons to several alternative electron transfer routes, many of which utilize O2 as the terminal electron acceptor. Especially under conditions where the production of photosynthetic electrons exceeds their metabolic need, cyanobacteria use so-called electron valves to safely dissipate the excess electrons. The flavodiiron proteins Flv1 and Flv3 have a capacity to function as a major alternative photosynthetic electron sink and perform O2 photoreduction without accumulating ROS. In this work, I show that Flv1 and Flv3 are indispensable during sudden changes in light intensity, as they prevent the over-reduction of the linear electron transport. The Flv1 and Flv3 proteins safeguard photosystem I, and are thus crucial for the survival of cyanobacteria under fluctuating light, a typical light condition in aquatic environments. Both the Flv1 and Flv3 proteins are essential for O2 photoreduction, and they are probably organized as a hetero-oligomer in order to function. Additionally, homo-oligomers of Flv3 are involved in the acclimation of cells to fluctuating light, and mediate a yet unidentified electron transfer pathway. The two other flavodiiron proteins in Synechocystis, which form a Flv2/Flv4 heterodimer, have been shown to play a role as an electron sink on the acceptor side of photosystem II. These proteins are encoded by the flv4-2 operon, together with Sll0218, a small membrane protein. I demonstrate that the flv4-2 operon is transcriptionally controlled by the transcriptionl factor NdhR, and post-transcriptionally by several antisense RNAs. The accumulation of the flv4-2 operon mRNA and one of the antisense RNAs, As1_flv4, was found to be inversely correlated. The As1_flv4 prevents the premature expression of the flv4-2 operon-encoded proteins, and the Flv2/4 electron valve is synthetized only if inorganic carbon limitation continues. Cyanobacteria have several ferredoxins that play a role in photosynthetic electron transfer and environmental stress tolerance. In this thesis work, I show that a bacterial-type ferredoxin 7 (Fed7) is important for the redox regulation of Synechocystis. Cells lacking Fed7 cannot properly respond to combined inorganic carbon limitation and high light stress. It is possible that Fed7 mediates the redox signals from the photosynthetic linear electron transport chain and functions indirectly as a redox-dependent regulator

    Isobutene production in Synechocystis sp. PCC 6803 by introducing α-ketoisocaproate dioxygenase from Rattus norvegicus.

    Get PDF
    Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO2 to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from Rattus norvegicus (RnKICD) in Escherichia coli. We discovered isobutene formation with the purified RnKICD with the rate of 104.6 ​± ​9 ​ng (mg protein)-1 min-1 using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium Synechocystis sp. PCC 6803 by introducing the RnKICD enzyme. Synechocystis strain heterologously expressing the RnKICD produced 91 ​ng ​l-1 OD750 -1 ​h-1. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that RnKICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts

    Homologous overexpression of NpDps2 and NpDps5 increases the tolerance for oxidative stress in the multicellular cyanobacterium Nostoc punctiforme

    No full text
    The filamentous cyanobacterium Nostoc punctiforme has several oxidative stress-managing systems, including Dps proteins. Dps proteins belong to the ferritin superfamily and are involved in abiotic stress management in prokaryotes. Previously, we found that one of the five Dps proteins in N. punctiforme, NpDps2, was critical for H2O2 tolerance. Stress induced by high light intensities is aggravated in N. punctiforme strains deficient of either NpDps2, or the bacterioferritin-like NpDps5. Here, we have investigated the capacity of NpDps2 and NpDps5 to enhance stress tolerance by homologous overexpression of these two proteins in N. punctiforme. Both overexpression strains were found to tolerate twice as high concentrations of added H2O2 as the control strain, indicating that overexpression of either NpDps2 or NpDps5 will enhance the capacity for H2O2 tolerance. Under high light intensities, the overexpression of the two NpDps did not enhance the tolerance against general light-induced stress. However, overexpression of the heterocyst-specific NpDps5 in all cells of the filament led to a higher amount of chlorophyll-binding proteins per cell during diazotrophic growth. The OENpDps5 strain also showed an increased tolerance to ammonium-induced oxidative stress. Our results provide information of how Dps proteins may be utilised for engineering of cyanobacteria with enhanced stress tolerance

    Flavodiiron proteins 1-to-4 function in versatile combinations in O-2 photoreduction in cyanobacteria

    No full text
    Flavodiiron proteins (FDPs) constitute a group of modular enzymes widespread in Bacteria, Archaea and Eukarya. Synechocystis sp. PCC 6803 has four FDPs (Flv1-4), which are essential for the photoprotection of photosynthesis. A direct comparison of light-induced O-2 reduction (Mehler-like reaction) under high (3% CO2, HC) and low (air level CO2, LC) inorganic carbon conditions demonstrated that the Flv1/Flv3 heterodimer is solely responsible for an efficient steady-state O-2 photoreduction under HC, with flv2 and flv4 expression strongly down-regulated. Conversely, under LC conditions, Flv1/Flv3 acts only as a transient electron sink, due to the competing withdrawal of electrons by the highly induced NDH-1 complex. Further, in vivo evidence is provided indicating that Flv2/Flv4 contributes to the Mehler-like reaction when naturally expressed under LC conditions, or, when artificially overexpressed under HC. The O-2 photoreduction driven by Flv2/Flv4 occurs down-stream of PSI in a coordinated manner with Flv1/Flv3 and supports slow and steady-state O-2 photoreduction

    Flavodiiron proteins 1-to-4 function in versatile combinations in O-2 photoreduction in cyanobacteria

    No full text
    Flavodiiron proteins (FDPs) constitute a group of modular enzymes widespread in Bacteria, Archaea and Eukarya. Synechocystis sp. PCC 6803 has four FDPs (Flv1-4), which are essential for the photoprotection of photosynthesis. A direct comparison of light-induced O-2 reduction (Mehler-like reaction) under high (3% CO2, HC) and low (air level CO2, LC) inorganic carbon conditions demonstrated that the Flv1/Flv3 heterodimer is solely responsible for an efficient steady-state O-2 photoreduction under HC, with flv2 and flv4 expression strongly down-regulated. Conversely, under LC conditions, Flv1/Flv3 acts only as a transient electron sink, due to the competing withdrawal of electrons by the highly induced NDH-1 complex. Further, in vivo evidence is provided indicating that Flv2/Flv4 contributes to the Mehler-like reaction when naturally expressed under LC conditions, or, when artificially overexpressed under HC. The O-2 photoreduction driven by Flv2/Flv4 occurs down-stream of PSI in a coordinated manner with Flv1/Flv3 and supports slow and steady-state O-2 photoreduction

    The Antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 Prevents Premature Expression of the flv4-2 Operon upon Shift in Inorganic Carbon Supply

    No full text
    Eisenhut M, Georg J, Klähn S, et al. The Antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 Prevents Premature Expression of the flv4-2 Operon upon Shift in Inorganic Carbon Supply. Journal of Biological Chemistry. 2012;287(40):33153-33162.The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (Ci), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the QB site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by Ci limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in Ci conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon
    corecore