526 research outputs found

    Physico-chemical properties of PEG-based inorganic hybrids

    Get PDF
    Organic-inorganic composites can be conveniently obtained by sol-gel recipes as class-I or class-II hybrids. They can find interesting applications in several fields, including drug delivery, scaffolding, bio-sensing, energetics, etc. In this paper we reconsider and reinvestigate our previous work in the field, by considering the sol-gel synthesis and physico-chemical characterization of class-I hybrids, and by trying to highlight some unifying elements that can be of help for the development of more efficient and precise synthesis methods. In particular, we will discuss systems based on poly(ethylene glycol) with SiO2 (1) and ZrO2 (2) as the ceramic phase. Emphasis will be put on the role played by solid-state NMR spectroscopy in unveiling the interactions at the base of hybrid formation. (1) Catauro, M., Bollino, F., Papale, F., Ferrara, C., Mustarelli, P., Silica-polyethylene glycol hybrids synthesized by sol-gel: Biocompatibility improvement of titanium implants by coating, Materials Science and Engineering C, 2015, 55, 5451. (2) Catauro, M., Bollino, F., Papale, F., Pacifico, S., Galasso, S., Ferrara, C., Mustarelli, P. Synthesis of zirconia/polyethylene glycol hybrid materials by sol-gel processing and connections between structure and release kinetic of indomethacin, Drug Delivery, 2014, 21, 595-604

    Physicochemical Properties of PEG-Based Inorganic Hybrids Obtained via Sol-Gel

    Get PDF
    Organic-inorganic composites can be conveniently obtained by sol-gel recipes. They can find interesting applications in several fields, including drug delivery, scaffolding, bio-sensing, energetics, etc. Herein, we reconsider and reinvestigate our previous work in the field, by considering the sol-gel synthesis and physicochemical characterization of class-I organic-inorganic hybrids, and by trying to highlight some unifying elements that can be of help for the development of more efficient and precise synthesis methods. Systems based on poly(ethylene glycol) with SiO2 and ZrO2 as the ceramic phase will be discussed. Emphasis will be put on the role played by solid-state NMR spectroscopy in unveiling the interactions at the base of hybrid formation

    Cathode Active Material Recycling from Spent Lithium Batteries: A Green (Circular) Approach Based on Deep Eutectic Solvents

    Get PDF
    The transition to a circular economy vision must handle the increasing request of metals required to satisfy the battery industry; this can be obtained by recycling and feeding back secondary raw materials recovered through proper waste management. Here, a novel and green proof-of-concept was developed, based on deep eutectic solvents (DESs) to fully and easily recover valuable metals from various cathode active materials, including LiMn2O4, LiNi0.5Mn1.5O4, and LiNi0.8Co0.2O2. DES composed of choline chloride and lactic acid could leach Li, Mn, Co, and Ni, achieving efficiency of 100 % under much milder conditions with respect to the previous literature. For the first time, to our best knowledge, a two-step approach was reported in the case of LiNi0.8Co0.2O2 for selective recovery of Li, Co, and Ni with high yield and purity. Furthermore, other cathode components, namely aluminum current collector and binder, were found to be not dissolved by the proposed DES, thus making a simple separation from the active material possible. Finally, this strategy was designed to easily regenerate and reuse the leaching solvents for more than one extraction, thus further boosting process sustainability

    Synthesis of zirconia/polyethylene glycol hybrid materials by sol-gel processing and connections between structure and release kinetic of indomethacin.

    Get PDF
    Controlled and local drug delivery systems of anti-inflammatory agents are attracting an increasing attention because of their extended therapeutic effect and reduced side effects. In this work, the sol–gel process was used to synthesize zirconia/polyethylene glycol (ZrO2/PEG) hybrid materials containing indomethacin for controlled drug delivery. Different percentages of PEG were introduced in the synthesis to modulate the release kinetic and an exhaustive chemical characterization of all samples was performed to detect the relationship between their structure and release ability. Fourier transform spectroscopy and solid-state NMR show that the Zr–OH groups of the inorganic matrix bond both the ethereal oxygen atoms of the polymer and the carboxylic groups of the drug. X-ray diffraction analysis ascertains the amorphous nature of those materials. Scanning electron microscopy detects the nanostructure and the homogeneous morphology of the synthesized materials. The bioactivity was demonstrated by the formation of a hydroxyapatite layer on the surface of the samples, after soaking in a simulated body fluid. The release kinetics study, performed by HPLC UV–Vis spectroscopy, proves that the release ability depends on PEG and the drug amount and also demonstrates the indomethacin integrity after the synthetic treatment. Controlled and local drug delivery systems of anti-inflammatory agents are attracting an increasing attention because of their extended therapeutic effect and reduced side effects. In this work, the sol-gel process was used to synthesize zirconia/polyethylene glycol (ZrO2/PEG) hybrid materials containing indomethacin for controlled drug delivery. Different percentages of PEG were introduced in the synthesis to modulate the release kinetic and an exhaustive chemical characterization of all samples was performed to detect the relationship between their structure and release ability. Fourier transform spectroscopy and solid-state NMR show that the Zr-OH groups of the inorganic matrix bond both the ethereal oxygen atoms of the polymer and the carboxylic groups of the drug. X-ray diffraction analysis ascertains the amorphous nature of those materials. Scanning electron microscopy detects the nanostructure and the homogeneous morphology of the synthesized materials. The bioactivity was demonstrated by the formation of a hydroxyapatite layer on the surface of the samples, after soaking in a simulated body fluid. The release kinetics study, performed by HPLC UV-Vis spectroscopy, proves that the release ability depends on PEG and the drug amount and also demonstrates the indomethacin integrity after the synthetic treatment

    Cr and Ni doping of Li4Ti5O12: cation distribution and functional properties

    Get PDF
    Cr- and Ni-doped Li4Ti5O12 compound has been characterized through the combined use of X-ray powder diffraction, electron paramagnetic resonance (EPR), 7Li nuclear magnetic resonance magic-angle spinning (NMR-MAS), micro-Raman, and magnetization measurements. The doping, occurring on the octahedral site of the cubic Li4Ti5O12 spinel lattice, strongly affects both the local and the average structural properties. The glassy character of the observed EPR signals suggests structural disorder in the stable Li4Ti5O12 matrix and the presence of clustering phenomena or nonhomogeneous distribution of the dopant ion, as also supported by 7Li NMR-MAS, micro-Raman, and magnetization results. The computation by numerical method of the complex EPR signal of the Cr-doped sample suggests that both CrTi and CrLi substitutions occur, giving rise to two distinct EPR components, corresponding to opposite axial distortion of the relative octahedral environments. On the basis of the compositional data, defect models involving oxygen or cation vacancies are proposed to explain the conductivity of the doped material

    Fabrication of Pt/Ti/TiO2 Photoelectrodes by RF-Magnetron Sputtering for Separate Hydrogen and Oxygen Production

    Get PDF
    Evolution of pure hydrogen and oxygen by photocatalytic water splitting was attained from the opposite sides of a composite Pt/Ti/TiO2 photoelectrode. The TiO2 films were prepared by radio frequency (RF)-Magnetron Sputtering at different deposition time ranging from 1 up to 8 h and then characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible-near infrared (UV-vis-NIR) diffuse reflectance spectroscopy. The photocatalytic activity was evaluated by incident photon to current efficiency (IPCE) measurements and by photocatalytic water splitting measurements in a two-compartment cell. The highest H2 production rate was attained with the photoelectrode prepared by 6 h-long TiO2 deposition thanks to its high content in the rutile polymorph, which is active under visible light. By contrast, the photoactivity dropped for longer deposition time, because of the increased probability of electron-hole recombination due to the longer electron transfer path
    • …
    corecore