136 research outputs found

    Optimal frequency conversion in the nonlinear stage of modulation instability

    Get PDF
    We investigate multi-wave mixing associated with the strongly pump depleted regime of induced modulation instability (MI) in optical fibers. For a complete transfer of pump power into the sideband modes, we theoretically and experimentally demonstrate that it is necessary to use a much lower seeding modulation frequency than the peak MI gain value. Our analysis shows that a record 95 % of the input pump power is frequency converted into the comb of sidebands, in good quantitative agreement with analytical predictions based on the simplest exact breather solution of the nonlinear Schr\"odinger equation

    Modulational instability in dispersion-kicked optical fibers

    Get PDF
    We study, both theoretically and experimentally, modulational instability in optical fibers that have a longitudinal evolution of their dispersion in the form of a Dirac delta comb. By means of Floquet theory, we obtain an exact expression for the position of the gain bands, and we provide simple analytical estimates of the gain and of the bandwidths of those sidebands. An experimental validation of those results has been realized in several microstructured fibers specifically manufactured for that purpose. The dispersion landscape of those fibers is a comb of Gaussian pulses having widths much shorter than the period, which therefore approximate the ideal Dirac comb. Experimental spontaneous MI spectra recorded under quasi continuous wave excitation are in good agreement with the theory and with numerical simulations based on the generalized nonlinear Schr\"odinger equation

    Heteroclinic structure of parametric resonance in the nonlinear Schr\"odinger equation

    Full text link
    We show that the nonlinear stage of modulational instability induced by parametric driving in the {\em defocusing} nonlinear Schr\"odinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearised Floquet analysis

    Soliton annihilation into a polychromatic dispersive wave

    Get PDF
    International audienceWe investigate the propagation of a soliton in an axially-varying optical fiber with a progressive change from anomalous to normal dispersion regimes. Spectral and temporal measurements provide evidence for a complete annihilation of the soliton, which explodes into a polychromatic dispersive wave. This interpretation is confirmed by numerical solution of the generalized nonlinear Schrödinger equation

    Bouncing of a dispersive wave in a solitonic cage

    Get PDF
    International audienceWe report the experimental observation of a weak dis-persive wave trapping within a cage formed by two solitons in an optical fiber. We show that the disper-sive wave bouncing is accompanied by a back and forth wavelength conversion of the probe to an idler wave. Besides, we observed the destruction of the soliton cage when dispersive wave power is increased, leading to the collision of the solitons

    Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity

    Get PDF
    International audienceWe experimentally investigate the roundtrip-to-roundtrip dynamics of the modulation instability spectrum in a passive fiber ring cavity presenting an inhomogeneous dispersion profile. By implementing a real-time spectroscopy technique we are able to record successive single-shot spectra, which display the evolution of the system toward a stationary state. We find that the two instability regimes (Turing and Faraday) that compete in this kind of inhomogeneous cavities not only differ by their characteristic frequency but also by their dynamical behaviour. The dynamic transition between those two regimes of instability is also presented

    Optical event horizons from the collision of a soliton and its own dispersive wave

    Get PDF
    International audienceWe observe experimentally the spectral signature of the collision between a soliton and the dispersive wave initially emitted from the soliton itself. This collision, interpreted in terms of an optical event horizon, is controlled by the use of an axially varying fiber which allows us to shape both the soliton and dispersive wave trajectories so that they both collide at a precise location within the fiber. The interaction of the dispersive wave with the soliton generates a reflected wave with a conversion efficiency which can be controlled by the input pump power. These experimental results are confirmed by numerical solution of the generalized nonlinear Schrödinger equation and by the analytical calculation of the conversion efficiency

    Topographic fibers: a platform for fundamental physical phenomena

    Get PDF
    International audienceWe review the fundamental physical phenomena associated with parametric resonance which can be successfully investigated in topographic fibers characterized by suitably engineered oscillating dispersion

    Longitudinal soliton tunneling in optical fiber

    Get PDF
    International audienceWe report the observation of the longitudinal soliton tunneling effect in axially-varying optical fibers. A fundamental soliton, initially propagating in the anomalous dispersion region of a fiber, can pass through a normal dispersion barrier without being substantially affected. We perform experimental studies by means of spectral and temporal characterizations that show the evidence of longitudinal soliton tunneling process. Our results are well supported by numerical simulations using the generalized nonlinear Schrödinger equation
    • …
    corecore