66 research outputs found

    Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification

    Get PDF
    The recent outbreak of Zika virus (ZIKV) disease caused an enormous number of infections in Central and South America, and the unusual increase in the number of infants born with microcephaly associated with ZIKV infection aroused global concern. Here, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay using a portable device for the detection of ZIKV. The assay specifically detected ZIKV strains of both Asian and African genotypes without cross-reactivity with other arboviruses, including Dengue and Chikungunya viruses. The assay detected viral RNA at 14.5 TCID50/mL in virus-spiked serum or urine samples within 15?min, although it was slightly less sensitive than reference real time RT-PCR assay. We then evaluated the utility of this assay as a molecular diagnostic test using 90 plasma or serum samples and 99 urine samples collected from 120 suspected cases of arbovirus infection in the states of Paraiba and Pernambuco, Brazil in 2016. The results of this assay were consistent with those of the reference RT-PCR test. This portable RT-LAMP assay was highly specific for ZIKV, and enable rapid diagnosis of the virus infection. Our results provide new insights into ZIKV molecular diagnostics and may improve preparedness for future outbreaks

    Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes

    Full text link

    Endothelial cells are able to synthesize and release catecholamines both in vitro and in vivo.

    Get PDF
    Recently it has been demonstrated that catecholamines are produced and used by macrophages and mediate immune response. The aim of this study is to verify whether endothelial cells (ECs), which are of myeloid origin, can produce catecholamines. We demonstrated that genes coding for tyrosine hydroxylase, Dopa decarboxylase, dopamine β hydroxylase (DβH), and phenylethanolamine-N-methyl transferase, enzymes involved in the synthesis of catecholamines, are all expressed in basal conditions in bovine aorta ECs, and their expression is enhanced in response to hypoxia. Moreover, hypoxia enhances catecholamine release. To evaluate the signal transduction pathway that regulates catecholamine synthesis in ECs, we overexpressed in bovine aorta ECs either protein kinase A (PKA) or the transcription factor cAMP response element binding, because PKA/cAMP response element binding activation induces tyrosine hydroxylase transcription and activity in response to stress. Both cAMP response element binding and PKA overexpression enhance DβH and phenylethanolamine-N-methyl transferase gene expression and catecholamine release, whereas H89, inhibitor of PKA, exerts the opposite effect, evidencing the role of PKA/cAMP response element binding transduction pathway in the regulation of catecholamine release in bovine aorta ECs. We then evaluated by immunohistochemistry the expression of tyrosine hydroxylase, Dopa decarboxylase, DβH, and phenylethanolamine-N-methyl transferase in femoral arteries from hindlimbs of C57Bl/6 mice 3 days after removal of the common femoral artery to induce chronic ischemia. Ischemia evokes tyrosine hydroxylase, Dopa decarboxylase, DβH, and phenylethanolamine-N-methyl transferase expression in the endothelium. Finally, the pharmacological inhibition of catecholamine release by fusaric acid, an inhibitor of DβH, reduces the ability of ECs to form network-like structures on Matrigel matrix. In conclusion, our study demonstrates for the first time that ECs are able to synthesize and release catecholamines in response to ischemia
    corecore