168 research outputs found

    HUMIC ACID-LIKE MATTER ISOLATED FROM GREEN URBAN WASTES. PART II: PERFORMANCE IN CHEMICAL AND ENVIRONMENTAL TECHNOLOGIES

    Get PDF
    Novel uses of the organic fraction of municipal solid wastes for diversified technological applications are reported. A humic acid-like substance (cHAL2) isolated from green urban wastes was tested as a chemical auxiliary for fabric cleaning and dyeing, and as a catalyst for the photodegradation of dyes. The results illustrate the fact that biomass wastes can be an interesting source of products for the chemical market. Process and product development in this direction are likely to offer high economic and environmental benefits in a modern, more sustainable waste treatment strategy

    High-Dose Melphalan Plus Thiotepa as Conditioning Regimen before Second Autologous Stem Cell Transplantation for “De Novo” Multiple Myeloma Patients: A Phase II Study

    Get PDF
    AbstractHigh-dose melphalan (MEL) is the standard therapy for autologous stem cell transplantation (ASCT) in multiple myeloma (MM), although the optimal conditioning regimen remains yet to be identified. Thiotepa (THIO) appears to be a potentially effective option, with broad-spectrum antitumor efficacy that can be added to myeloablative multiagent regimens for ASCT in hematopoietic tumors. We conducted a phase II trial, adding THIO (275 mg/m2) to high-dose MEL (140 mg/m2) before a second ASCT, in a tandem ASCT strategy, in 64 patients with “de novo” MM. Overall, there was no transplant-related mortality. The incidence of neutropenic fever and mucositis (grades 3 to 4) was 39% and 9%, respectively. Median number of days to neutrophil and platelet engraftment were 11 and 12, respectively. After the second transplantation, the complete response improved to 43.8%. Overall response rate was 86%. After a median follow-up of 18.1 months, 13 patients had progressed and 3 died from MM. Median progression-free survival was not reached, and actuarial 2-year rates of progression-free and overall survival were 71% and 88.9%, respectively. Our results suggest that THIO/MEL is a feasible and safe conditioning regimen for ASCT in MM and should be explored for efficacy in a phase III study

    Eco-Friendly β-cyclodextrin and Linecaps Polymers for the Removal of Heavy Metals

    Get PDF
    Environment-friendly nanosponges, having a high content of carboxyl groups, were synthesized by crosslinking β-cyclodextrin and linecaps, a highly soluble pea starch derivative, with citric acid in water. Additionally, pyromellitic nanosponges were prepared by reacting β-cyclodextrin and linecaps with pyromellitic dianhydride in dimethyl sulfoxide and used in comparison with the citric nanosponges. After ion-exchange of the carboxyl groups H+ with sodium ions, the ability of the nanosponges to sequester heavy metal cations was investigated. At a metal concentration of 500 ppm, the pyromellitate nanosponges exhibited a higher retention capacity than the citrate nanosponges. At lower metal concentrations (≤50 ppm) both the citrate and the pyromellitate nanosponges showed high retention capacities (up to 94% of the total amount of metal), while, in the presence of interfering sea water salts, the citrate nanosponges were able to selectively adsorb a significantly higher amount of heavy metals than the pyromellitate nanosponges, almost double in the case of Cu2+

    One shot NEPA plus dexamethasone to prevent multiple-day chemotherapy in sarcoma patients

    Get PDF
    Purpose: Chemotherapy-induced nausea and vomiting (CINV) is one of the most feared and disturbing adverse events of cancer treatment associated with decreased adherence to effective chemotherapy regimens. For high-risk soft tissue sarcoma patients, receiving multiple-day chemotherapy (MD-CT), antiemetic guidelines recommend a combination of an NK 1 receptor antagonist (NK 1 -RA), a 5-HT 3 receptor antagonist (5HT 3 -RA), and dexamethasone on each day of the antineoplastic treatment. NEPA is the first oral fixed-dose combination of a highly selective NK 1 -RA, netupitant, and second-generation 5HT 3 -RA, palonosetron. So far, no data has been published in literature about the efficacy of a single dose of NEPA in MD-CT. Methods: We performed a prospective, non-comparative study to assess the efficacy of one shot of NEPA plus dexamethasone in sarcoma patients receiving MD-CT. The primary efficacy endpoint was a complete response (CR: no emesis, no rescue medication) during the overall phase (0–120 h) in cycle 1. The main secondary endpoints were CR during the overall phase of cycles 2 and 3. Results: The primary endpoint was reached in 88.9% of patients. Cycles 2 and 3 overall CR rates were 88.9% and 82.4%, respectively. The antiemetic regimen was well tolerated. Conclusions: This pilot study showed the benefit of one shot of NEPA to prevent CINV in sarcoma patients receiving MD-chemotherapy

    ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing

    Get PDF
    Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the “A Disintegrin And Metalloproteases” (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X

    Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily

    Get PDF
    Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein-protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1-3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morpholog

    Neurodegenerative phenotypes in an A53T α-synuclein transgenic mouse model are independent of LRRK2

    Get PDF
    Mutations in the genes encoding LRRK2 and α-synuclein cause autosomal dominant forms of familial Parkinson's disease (PD). Fibrillar forms of α-synuclein are a major component of Lewy bodies, the intracytoplasmic proteinaceous inclusions that are a pathological hallmark of idiopathic and certain familial forms of PD. LRRK2 mutations cause late-onset familial PD with a clinical, neurochemical and, for the most part, neuropathological phenotype that is indistinguishable from idiopathic PD. Importantly, α-synuclein-positive Lewy bodies are the most common pathology identified in the brains of PD subjects harboring LRRK2 mutations. These observations may suggest that LRRK2 functions in a common pathway with α-synuclein to regulate its aggregation. To explore the potential pathophysiological interaction between LRRK2 and α-synuclein in vivo, we modulated LRRK2 expression in a well-established human A53T α-synuclein transgenic mouse model with transgene expression driven by the hindbrain-selective prion protein promoter. Deletion of LRRK2 or overexpression of human G2019S-LRRK2 has minimal impact on the lethal neurodegenerative phenotype that develops in A53T α-synuclein transgenic mice, including premature lethality, pre-symptomatic behavioral deficits and human α-synuclein or glial neuropathology. We also find that endogenous or human LRRK2 and A53T α-synuclein do not interact together to influence the number of nigrostriatal dopaminergic neurons. Taken together, our data suggest that α-synuclein-related pathology, which occurs predominantly in the hindbrain of this A53T α-synuclein mouse model, occurs largely independently from LRRK2 expression. These observations fail to provide support for a pathophysiological interaction of LRRK2 and α-synuclein in vivo, at least within neurons of the mouse hindbrai

    Common Pathogenic Effects of Missense Mutations in the P-Type ATPase ATP13A2 (PARK9) Associated with Early-Onset Parkinsonism

    Get PDF
    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism
    • …
    corecore