390 research outputs found

    Next challenges for adaptive learning systems

    Get PDF
    Learning from evolving streaming data has become a 'hot' research topic in the last decade and many adaptive learning algorithms have been developed. This research was stimulated by rapidly growing amounts of industrial, transactional, sensor and other business data that arrives in real time and needs to be mined in real time. Under such circumstances, constant manual adjustment of models is in-efficient and with increasing amounts of data is becoming infeasible. Nevertheless, adaptive learning models are still rarely employed in business applications in practice. In the light of rapidly growing structurally rich 'big data', new generation of parallel computing solutions and cloud computing services as well as recent advances in portable computing devices, this article aims to identify the current key research directions to be taken to bring the adaptive learning closer to application needs. We identify six forthcoming challenges in designing and building adaptive learning (pre-diction) systems: making adaptive systems scalable, dealing with realistic data, improving usability and trust, integrat-ing expert knowledge, taking into account various application needs, and moving from adaptive algorithms towards adaptive tools. Those challenges are critical for the evolving stream settings, as the process of model building needs to be fully automated and continuous.</jats:p

    Directed closure coefficient and its patterns.

    Full text link
    The triangle structure, being a fundamental and significant element, underlies many theories and techniques in studying complex networks. The formation of triangles is typically measured by the clustering coefficient, in which the focal node is the centre-node in an open triad. In contrast, the recently proposed closure coefficient measures triangle formation from an end-node perspective and has been proven to be a useful feature in network analysis. Here, we extend it by proposing the directed closure coefficient that measures the formation of directed triangles. By distinguishing the direction of the closing edge in building triangles, we further introduce the source closure coefficient and the target closure coefficient. Then, by categorising particular types of directed triangles (e.g., head-of-path), we propose four closure patterns. Through multiple experiments on 24 directed networks from six domains, we demonstrate that at network-level, the four closure patterns are distinctive features in classifying network types, while at node-level, adding the source and target closure coefficients leads to significant improvement in link prediction task in most types of directed networks

    Change point detection in social networksCritical review with experiments

    Full text link
    © 2018 Elsevier Inc. Change point detection in social networks is an important element in developing the understanding of dynamic systems. This complex and growing area of research has no clear guidelines on what methods to use or in which circumstances. This paper critically discusses several possible network metrics to be used for a change point detection problem and conducts an experimental, comparative analysis using the Enron and MIT networks. Bayesian change point detection analysis is conducted on different global graph metrics (Size, Density, Average Clustering Coefficient, Average Shortest Path) as well as metrics derived from the Hierarchical and Block models (Entropy, Edge Probability, No. of Communities, Hierarchy Level Membership). The results produced the posterior probability of a change point at weekly time intervals that were analysed against ground truth change points using precision and recall measures. Results suggest that computationally heavy generative models offer only slightly better results compared to some of the global graph metrics. The simplest metrics used in the experiments, i.e. nodes and links numbers, are the recommended choice for detecting overall structural changes

    Differentiation of an additive interval measure with values in a conjugate Banach space

    Get PDF
    We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodym property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals

    Adaptive community detection incorporating topology and content in social networks<sup>✰</sup>

    Full text link
    © 2018 In social network analysis, community detection is a basic step to understand the structure and function of networks. Some conventional community detection methods may have limited performance because they merely focus on the networks’ topological structure. Besides topology, content information is another significant aspect of social networks. Although some state-of-the-art methods started to combine these two aspects of information for the sake of the improvement of community partitioning, they often assume that topology and content carry similar information. In fact, for some examples of social networks, the hidden characteristics of content may unexpectedly mismatch with topology. To better cope with such situations, we introduce a novel community detection method under the framework of non-negative matrix factorization (NMF). Our proposed method integrates topology as well as content of networks and has an adaptive parameter (with two variations) to effectively control the contribution of content with respect to the identified mismatch degree. Based on the disjoint community partition result, we also introduce an additional overlapping community discovery algorithm, so that our new method can meet the application requirements of both disjoint and overlapping community detection. The case study using real social networks shows that our new method can simultaneously obtain the community structures and their corresponding semantic description, which is helpful to understand the semantics of communities. Related performance evaluations on both artificial and real networks further indicate that our method outperforms some state-of-the-art methods while exhibiting more robust behavior when the mismatch between topology and content is observed

    Semi-supervised stochastic blockmodel for structure analysis of signed networks

    Full text link
    © 2020 Elsevier B.V. Finding hidden structural patterns is a critical problem for all types of networks, including signed networks. Among all of the methods for structural analysis of complex network, stochastic blockmodel (SBM) is an important research tool because it is flexible and can generate networks with many different types of structures. However, most existing SBM learning methods for signed networks are unsupervised, leading to poor performance in terms of finding hidden structural patterns, especially when handling noisy and sparse networks. Learning SBM in a semi-supervised way is a promising avenue for overcoming the above difficulty. In this type of model, a small number of labelled nodes and a large number of unlabelled nodes, coupled with their network structures, are simultaneously used to train SBM. We propose a novel semi-supervised signed stochastic blockmodel and its learning algorithm based on variational Bayesian inference, with the goal of discovering both assortative (the nodes connect more densely in same clusters than that in different clusters) and disassortative (the nodes link more sparsely in same clusters than that in different clusters) structures from signed networks. The proposed model is validated through a number of experiments wherein it compared with the state-of-the-art methods using both synthetic and real-world data. The carefully designed tests, allowing to account for different scenarios, show our method outperforms other approaches existing in this space. It is especially relevant in the case of noisy and sparse networks as they constitute the majority of the real-world networks

    Encoding edge type information in graphlets.

    Full text link
    Graph embedding approaches have been attracting increasing attention in recent years mainly due to their universal applicability. They convert network data into a vector space in which the graph structural information and properties are maximumly preserved. Most existing approaches, however, ignore the rich information about interactions between nodes, i.e., edge attribute or edge type. Moreover, the learned embeddings suffer from a lack of explainability, and cannot be used to study the effects of typed structures in edge-attributed networks. In this paper, we introduce a framework to embed edge type information in graphlets and generate a Typed-Edge Graphlets Degree Vector (TyE-GDV). Additionally, we extend two combinatorial approaches, i.e., the colored graphlets and heterogeneous graphlets approaches to edge-attributed networks. Through applying the proposed method to a case study of chronic pain patients, we find that not only the network structure of a patient could indicate his/her perceived pain grade, but also certain social ties, such as those with friends, colleagues, and healthcare professionals, are more crucial in understanding the impact of chronic pain. Further, we demonstrate that in a node classification task, the edge-type encoded graphlets approaches outperform the traditional graphlet degree vector approach by a significant margin, and that TyE-GDV could achieve a competitive performance of the combinatorial approaches while being far more efficient in space requirements

    Toward Digital Twin Oriented Modeling of Complex Networked Systems and Their Dynamics: A Comprehensive Survey

    Full text link
    This paper aims to provide a comprehensive critical overview on how entities and their interactions in Complex Networked Systems (CNS) are modelled across disciplines as they approach their ultimate goal of creating a Digital Twin (DT) that perfectly matches the reality. We propose four complexity dimensions for the network representation and five generations of models for the dynamics modelling to describe the increasing complexity level of the CNS that will be developed towards achieving DT (e.g. CNS dynamics modelled offline in the 1st generation v.s. CNS dynamics modelled simultaneously with a two-way real time feedback between reality and the CNS in the 5th generation). Based on that, we propose a new framework to conceptually compare diverse existing modelling paradigms from different perspectives and create unified assessment criteria to evaluate their respective capabilities of reaching such an ultimate goal. Using the proposed criteria, we also appraise how far the reviewed current state-of-the-art approaches are from the idealised DTs. Finally, we identify and propose potential directions and ways of building a DT-orientated CNS based on the convergence and integration of CNS and DT utilising a variety of cross-disciplinary techniques
    • …
    corecore