Functiones et Approximatio ** (201*), 1-12 doi: 10.7169/facm/2014.50.*.*

DIFFERENTIATION OF AN ADDITIVE INTERVAL MEASURE WITH VALUES IN A CONJUGATE BANACH SPACE

Benedetto Bongiorno, Luisa Di Piazza, Kazimierz Musiał

Dedicated to Lech Drewnowski on the occasion of his 70th birthday

Abstract: We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodým property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.

Keywords: Kurzweil-Henstock integral, Pettis integral, variational measure.

1. Notations and preliminaries.

Let [0,1] be the unit interval of the real line equipped with the usual topology and the Lebesgue measure λ . We denote by \mathcal{I} the family of all nontrivial closed subintervals of [0,1], by \mathcal{L} the family of all Lebesgue measurable subsets of [0,1] and by \mathcal{L}^+ the family of all Lebesgue measurable subsets of [0,1] of positive measure.

If $E \subset [0,1]$, then its Lebesgue measure is denoted by |E| or $\lambda(E)$. Throughout X is a Banach space with its dual X^* . The closed unit ball of X is denoted by B(X). A mapping $\nu \colon \mathcal{L} \to X$ is said to be an X-valued measure if ν is countably additive in the norm topology of X. If μ is a positive measure on \mathcal{L} or an X-valued measure, then by $\mu \ll \lambda$ we mean that |E| = 0 implies $\mu(E) = 0$. We say then that μ is λ -continuous. The variation of an X-valued measure ν is denoted by $|\nu|$.

 $\tau(X^*, X)$ is the Mackey topology on X^* and $\tau_c(X^*, X)$ is the topology of uniform convergence on compact subsets of X. It is known (cf. [12]) that $\tau_c(X^*, X)$ coincides on $B(X^*)$ with the weak*-topology $\sigma(X^*, X)$.

A partition in [0,1] is a finite collection of pairs $\mathcal{P} = \{(I_1, t_1), \dots, (I_p, t_p)\}$, where I_1, \dots, I_p are non-overlapping subintervals of [0,1] and $t_i \in I_i$, for all $i \leq p$. Given a subset E of [0,1], we say that the partition \mathcal{P} is anchored on E if $t_i \in E$

The work of the authors has been partially supported by the Polish Ministry of Science and Higher Education, Grant No. N N201 416139 and by GNAMPA of Italy, Grant No U2012/000388 09/05/2012.

²⁰¹⁰ Mathematics Subject Classification: primary: 28B20; secondary: 26A39, 28B05, 46G10, 54C60

for each i=1,...,p. If $\bigcup_{i=1}^p I_i=[0,1]$ we say that \mathcal{P} is a partition of [0,1]. A gauge on $E\subset [0,1]$ is a positive function on E. For a given gauge δ , we say that a partition $\{(I_1,t_1),\ldots,(I_p,t_p)\}$ is δ -fine if $I_i\subset (t_i-\delta(t_i),t_i+\delta(t_i)),\ i=1,\ldots,p$.

Given two real numbers a, b, we denote by the symbol $\langle a, b \rangle$ the interval $[\min\{a,b\}, \max\{a,b\}]$.

Definition 1.1. A function $f: [0,1] \to \mathbb{R}$ is said to be *Henstock-Kurzweil integrable*, or simply HK-integrable, on [0,1] if there exists $w \in \mathbb{R}$ with the following property: for every $\epsilon > 0$ there exists a gauge δ on [0,1] such that

$$\left| \sum_{i=1}^{p} f(t_i) |I_i| - w \right| < \varepsilon,$$

for each δ -fine partition $\mathcal{P} = \{(I_1, t_1), \dots, (I_p, t_p)\}$ of [0, 1].

We set $(HK) \int_0^1 f d\lambda := w$. By HK[0,1] is denoted the set of all HK-integrable functions $f: [0,1] \to \mathbb{R}$.

It is well known that if $f \in HK[0,1]$ then f is HK-integrable on each $I \in \mathcal{I}$. We call the additive interval function $F(I) := (HK) \int_I f d\lambda$ the HK-primitive of f.

Definition 1.2. A function $f: [0,1] \to X$ is said to be scalarly Henstock-Kurzweil integrable if, for each $x^* \in X^*$, the function x^*f is Henstock-Kurzweil integrable. A scalarly Henstock-Kurzweil integrable function f is said to be Henstock-Kurzweil-Pettis integrable (or simply HKP-integrable) if for each $I \in \mathcal{I}$ there exists $w_I \in X$ such that

$$\langle x^*, w_I \rangle = \int_I \langle x^*, f(t) \rangle dt$$
, for every $x^* \in X^*$.

We call w_I the Henstock-Kurzweil-Pettis integral of f over I and we write $w_I := (HKP) \int_a^b f(t) dt$.

We denote by HKP([0,1], X) the set of all X-valued Henstock-Kurzweil-Pettis integrable functions on [0,1] (functions that are scalarly equivalent are identified).

Definition 1.3. A function $f:[0,1] \to X^*$ is said to be w^* -scalarly Henstock-Kurzweil integrable if, for each $x \in X$, the function xf is Henstock-Kurzweil integrable. A w^* -scalarly Henstock-Kurzweil integrable function $f:[0,1] \to X^*$ is said to be Henstock-Kurzweil-Gelfand integrable (or simply HKG-integrable) if, for each interval $I \in \mathcal{I}$, there exists a vector $\Psi(I) \in X^*$ such that for every $x \in X$

$$\langle x, \Psi(I) \rangle = (H\!K) \! \int_I \! \langle x, f(t) \rangle \, dt \, . \label{eq:polyspectrum}$$

We call $\Psi(I)$ the Henstock-Kurzweil-Gelfand integral of f over I and we write $\Psi(I) := (HKG) \int_I f(t) dt$. Ψ is called the HKG-primitive of f.

Following the proof of [9, Theorem 3] (with suitable changes), it is easy to see that a function $f: [0,1] \to X^*$ is HKG-integrable if and only if f is w^* -scalarly Henstock-Kurzweil integrable.

Throughout, we identify a function $\Psi:[0,1]\to X$ (resp. $\Psi:[0,1]\to X^*$) with the additive interval function $\Psi:\mathcal{I}\to X$ (resp. $\Psi:\mathcal{I}\to X^*$) defined by $\Psi(I)=\Psi(b)-\Psi(a)$, if I=[a,b]. And conversely, with each $\Psi:\mathcal{I}\to X$, (resp. $\Psi:\mathcal{I}\to X^*$) we associate $\Psi:[0,1]\to X$ (resp. $\Psi:[0,1]\to X^*$) by setting $\Psi(t)=\Psi([0,t])$.

Definition 1.4. A function $f \colon [0,1] \to X$ is said to be *scalarly* measurable (*scalarly* integrable) if, for each $x^* \in X^*$, the function x^*f is Lebesgue measurable (integrable). A scalarly integrable function $f \colon [0,1] \to X$ is said to be *Pettis integrable* if, for each set $A \in \mathcal{L}$ there exists a vector $\nu_f(A) \in X$ such that for every $x^* \in X^*$

$$\langle x^*, \nu_f(A) \rangle = \int_A \langle x^*, f(t) \rangle dt$$
.

We call $\nu_f(A)$ the *Pettis integral of f* over A and we write $\nu_f(A) := (P) \int_A f(t) dt$. It is known (see [15]) that $\nu_f : \mathcal{L} \to X$ is a measure of σ -finite variation.

Definition 1.5. A function $f:[0,1] \to X^*$ is said to be w^* -scalarly measurable (resp. w^* -scalarly integrable) if, for each $x \in X$, the function xf is Lebesgue measurable (resp. integrable). It is well known that each w^* -scalarly integrable function $f:[0,1] \to X^*$ is Gelfand integrable, that is, for each set $A \in \mathcal{L}$, there exists a vector $\nu(A) \in X^*$ such that

$$\langle x, \nu(A) \rangle = \int_A \langle x, f(t) \rangle dt$$

for every $x \in X$.

We call the set function $\nu \colon \mathcal{L} \to X^*$ the Gelfand integral of f on [0,1] and we write $\nu(A) := (G) \int_A f(t) dt$.

Definition 1.6. A function $f: [0,1] \to X^*$ is said to be weak*-scalarly bounded on E if

$$\exists M>0 \ \forall x\in B(X) \ |\langle x,f\rangle|\leqslant M \qquad \text{a.e on } E.$$

A function $f: [0,1] \to X$ is said to be scalarly bounded on E, if it is weak*-scalarly bounded, when considered as an X^{**} -valued function.

Definition 1.7. Let $\Phi:[0,1]\to X$ be a function. If there is a function $\Phi_p':[0,1]\to X$ such that for each $x^*\in X^*$

$$\lim_{h \to 0} \frac{x^*(\Phi < t, t+h >)}{|h|} = x^*(\Phi'_p(t)) ,$$

for almost all $t \in [0, 1]$ (the exceptional sets depend on x^*), then Φ is said to be pseudo-differentiable on [0, 1], with pseudo-derivative Φ'_p (see [16], p. 300).

Let $\Phi:[0,1]\to X^*$ be a function. If there is a function $\Phi_p':[0,1]\to X^*$ such that for each $x\in X$

$$\lim_{h \to 0} \frac{x(\varPhi < t, t+h>)}{|h|} = x(\varPhi'_p(t)) \ ,$$

for almost all $t \in [0, 1]$ (the exceptional sets depend on x^*), then Φ is said to be w^* -pseudo-differentiable on [0, 1], with w^* -pseudo-derivative Φ'_p .

2. Variational measures.

Definition 2.1. Given an additive interval function $\Phi: \mathcal{I} \to X$, a gauge δ and a set $E \subset [0,1]$ we define

$$\operatorname{Var}(\varPhi, \delta, E) = \sup \left\{ \begin{array}{ll} \sum_{i=1}^{p} \|\varPhi(I_i)\| : & \{(I_i, t_i) : \ i = 1, ..., p\} \ \delta - \text{fine} \\ & \text{partition anchored on } E \end{array} \right\}$$

if $E \neq \emptyset$ and $Var(\Phi, \delta, \emptyset) = 0$. Then we set

$$V_{\Phi}(E) = \inf \{ Var(\Phi, \delta, E) : \delta \text{ is a gauge on } E \}$$

if $E \neq \emptyset$ and $V_{\Phi}(\emptyset) = 0$.

We call V_{Φ} the variational measure generated by Φ . V_{Φ} is known to be a metric outer measure in [0,1] (see [17]). In particular, V_{Φ} restricted to Borel subsets of [0,1] is a measure. We say that V_{Φ} is absolutely continuous with respect to λ (we write then $V_{\Phi} \ll \lambda$), if $\lambda(E) = 0$ yields $V_{\Phi}(E) = 0$, for all $E \in \mathcal{L}$. Notice that if $V_{\Phi} \ll \lambda$, then given $\varepsilon > 0$ and $\emptyset \neq E \in \mathcal{L}$ with |E| = 0, there exists a gauge δ such that $Var(\Phi, \delta', E) < \varepsilon$, for every $\delta' \leqslant \delta$.

If Φ is continuous, then $V_{\Phi}(I) \leq |\Phi|(I)$ for every $I \in \mathcal{I}$, where

$$|\varPhi|(I) = \sup \left\{ \sum_{i=1}^p \|\varPhi(I_i)\| : I_i \text{ are non-overlapping subintervals of } I \right\}$$
 .

We would like to remark that if Φ is discontinuous the inequality $V_{\Phi}(I) \leq |\Phi|(I)$ may fail. As an example consider Φ on [0,1] defined in the following way: $\Phi(t) = 1$ for $t \in [0,1/2)$, $\Phi(t) = 0$ for $t \in [1/2,1]$. Φ is not continuous, and $V_{\Phi}([1/2,1]) = 1 > |\Phi|([1/2,1]) = 0$.

Moreover we say that a variational measure V_{Φ} is σ -finite if there is a sequence of (pairwise disjoint) sets F_n covering [0,1] and such that $V_{\Phi}(F_n) < \infty$, for every $n \in \mathbb{N}$.

By a result of Thomson (see [17, Theorem 3.15]) it follows that the sets F_n in the previous definition can be taken from \mathcal{L} .

We recall that a function $\Phi: [0,1] \to X$ is said to be BV_* on a set $E \subseteq [0,1]$ if $\sup \sum_{i=1}^n \omega(\Phi(J_i)) < +\infty$, where the supremum is taken over all finite collections $\{J_1,...,J_n\}$ of non overlapping intervals in $\mathcal I$ with end-points in E, and the symbol $\omega(\Phi(J))$ stands for $\sup\{\|\Phi(u) - \Phi(z)\| : u, z \in J\}$. The function Φ is said to be BVG_* on [0,1] if $[0,1] = \bigcup_n E_n$ and Φ is BV_* on each E_n .

In the following we will use the following results proved in [2].

Proposition 2.2. Let $\Phi \colon \mathcal{I} \to X$ be an additive interval function.

- 1. If $V_{\Phi} \ll \lambda$, then Φ is continuous on [0,1] and V_{Φ} is σ -finite.
- 2. V_{Φ} is σ -finite if and only if Φ is BVG_* on [0,1].

In case of a separable Banach space X and Φ being an HKP-integral we are able to describe the variational measure V_{Φ} more precisely. Our result generalizes a well known fact for real valued functions.

Proposition 2.3. Assume that X is a separable Banach space, $\Phi: \mathcal{I} \to X$ is additive and

$$\Phi(I) = (HKP) \int_{I} f(t) dt.$$

If $V_{\Phi} \ll \lambda$, then

$$V_{\Phi}(E) = \int_{E} ||f|| dt$$
, for every $E \in \mathcal{L}$.

Proof. By Proposition 2.2, V_{Φ} is σ -finite and so Φ is a BVG^* function. Moreover, by [13, Theorem 9], for each measurable set E, we have

$$V_{\Phi}(E) = \int_{E} |\overline{D}| \Phi(t) dt$$

where the symbol $|\overline{D}|\Phi(t)$ denotes the upper absolute derivative of Φ in t, that is

$$|\overline{D}|\Phi(t) = \limsup_{h \to 0} \frac{||\Phi < t, t+h > ||}{|h|}.$$

Let us observe that since Φ is the HKP-primitive of f, then f is a pseudo-derivative of Φ . Now, since X is separable, then by a result in an unpublished paper of Gordon [11] (see also [13]), Φ is differentiable a. e. on [0,1] with derivative f. So $|\overline{D}|\Phi(t)=||f||$ a.e. on [0,1] and this completes the proof.

Question 2.4. Do we have always $V_{\Phi}(E) = \int_{E} ||f(t)|| dt$ or $V_{\Phi}(E) \leq \int_{E} ||f|| d\lambda$, for every $E \in \mathcal{L}$, if the function ||f|| is measurable?

Besides the above variational measure we define the following two outer measures, introduced for technical reasons only:

$$W_{\Phi}^{w}(E) = \sup_{x^* \in B(X^*)} V_{x^*\Phi}(E), \quad \text{if } \Phi: \mathcal{I} \to X$$

and

$$W_{\Phi}^*(E) = \sup_{x \in B(X)} V_{x\Phi}(E), \quad \text{if } \Phi : \mathcal{I} \to X^*.$$

In general, the two outer measures are not metric and not all Borel subsets of [0,1] are measurable with respect to them.

Let us observe that if $\Phi: \mathcal{I} \to X^*$ is an additive interval function, then by the definitions of variational measures we have:

$$W_{\Phi}^{*}(E) \leqslant W_{\Phi}^{w}(E) \leqslant V_{\Phi}(E) \tag{1}$$

for every $E \subset [0,1]$. In fact, for every $I \in \mathcal{I}$, $x^{**} \in B(X^{**})$ and $x \in B(X)$, we have: $|x^{**}\Phi(I)| \leq ||\Phi(I)||$ and $|x\Phi(I)| \leq ||\Phi(I)||$. So $V_{x^{**}\Phi}(E) \leq V_{\Phi}(E)$, $V_{x\Phi}(E) \leq V_{\Phi}(E)$ and inequalities (1) follow.

Definition 2.5. Let V be one of the above introduced outer measures and let $AV := \{\frac{V(E)}{|E|} : |E| > 0\}$ be the average range of V. We say that AV is locally bounded if there are sets $E_n \in \mathcal{L}$ such that $|\bigcup_n E_n| = 1$ and $V(E_n \cap E) \leqslant n|E_n \cap E|$, for every $n \in \mathbb{N}$ and $E \in \mathcal{L}$.

Proposition 2.6. Let $\Phi: \mathcal{I} \to X$. If $V_{\Phi} \ll \lambda$, then AV_{Φ} is locally bounded.

Proof. By Proposition 2.2 we have that V_{Φ} is σ -finite. Since $V_{\Phi}|_{\mathcal{L}}$ is a measure, applying the Radon-Nikodým Theorem, we conclude that AV_{Φ} is locally bounded.

Remark 2.7. Assume that

$$\Phi(I) = (HKP) \int_{I} f(t) dt.$$

In general V_{Φ} is neither σ -finite nor absolutely continuous. In fact, if V_{Φ} is σ -finite, then by Proposition 2.2, Φ is a BVG_* function. So, if X has the RNP, then Φ is a.e. differentiable (see [1, Theorem 3.6]). But by a result in [5] we know that in each infinite dimensional Banach space (in particular in a conjugate space with the RNP) there exist strongly measurable Pettis (and then Henstok-Kurzweil-Pettis) integrable functions whose Pettis integrals are nowhere differentiable. Each such a function is HKP-integrable and induces a non- σ -finite variational measure V_{Φ} .

In the general case the following characterization holds.

Proposition 2.8. A function $\Phi: [0,1] \to X$ is an HKP-primitive (of a function f) if and only if $W_{\Phi}^{w} \ll \lambda$ and Φ is pseudo-differentiable (with pseudo-derivative f).

Proof. The proof follows at once from the characterization of the primitives of real valued HK-integrable functions (see [3]).

3. Henstock-Kurzweil-Gelfand integral.

The following result gives a full description of X^* -valued additive interval measures that can be represented as an HKG-integral.

Theorem 3.1. An additive function $\Phi: \mathcal{I} \to X^*$ is an HKG-primitive if and only if $W_{\Phi}^* \ll \lambda$ and AW_{Φ}^* is locally bounded.

Proof. Assume first that $f:[0,1] \to X^*$ is HKG-integrable and let $\Phi(I) = (HKG) \int_I f(t) dt$, for every $I \in \mathcal{I}$. Since $xf \in HK[0,1]$ for every $x \in X$, we have $V_{x\Phi} \ll \lambda$, and so also $W_{\Phi}^* \ll \lambda$. Moreover, according [14, Corollary 3.1] there are pairwise disjoint sets $E_n \in \mathcal{L}$ such that $\bigcup_n E_n = [0,1]$ and $|xf\chi_{E_n}| \leqslant n$ a.e., for each $x \in B(X)$ (the exceptional sets depend on x). It follows that every $f\chi_{E_n}$ is Gelfand integrable.

According to [4] and [6] we have also

$$V_{x\Phi}(E \cap E_n) = \int_{E \cap E_n} |xf(t)| dt \leqslant n|E \cap E_n| ||x||$$

for every $E \in \mathcal{L}$ and $n \in \mathbb{N}$. Hence $W_{\Phi}^*(E \cap E_n) \leq n|E \cap E_n|$ and consequently AW_{Φ}^* is locally bounded.

Assume now that $W_{\Phi}^* \ll \lambda$ and AW_{Φ}^* is locally bounded. Then $V_{x\Phi} \ll \lambda$ for every $x \in X$. According to [3], for every $x \in B(X)$, let $f_x \in HK[0,1]$ be such that

$$\langle x, \Phi(I) \rangle = (HK) \int_I f_x(t) dt$$
 for every $I \in \mathcal{I}$.

Let ρ be a lifting on $L_{\infty}[0,1]$. Since AW_{Φ}^* is locally bounded, there are pairwise disjoint sets $E_n = \rho(E_n) \in \mathcal{L}$ such that $|\bigcup_n E_n| = 1$ and

$$W_{\Phi}^*(E_n \cap E) \leqslant n|E_n \cap E|, \quad \text{for every } n \in \mathbb{N} \text{ and } E \in \mathcal{L}.$$
 (2)

According to [4] and [6], then

$$V_{x\Phi}(E) = \int_{E} |f_x(t)| dt$$
 for every $E \in \mathcal{L}$ and $x \in X$. (3)

In particular (3) holds true for measurable $E \subseteq E_n$. It follows from (2) and (3) that for every $n \in \mathbb{N}$ and $x \in B(X)$ we have $|f_x|\chi_{E_n} \leq n\chi_{E_n}$, a.e. In particular

$$|\rho(f_x)|(t)\chi_{E_n}(t)=\rho(|f_x|)(t)\chi_{E_n}(t)\leqslant n\quad\text{for every }t\in\left[0,1\right],x\in B(X)\text{ and }n\in\mathbb{N}.$$

Define now a function $f:[0,1]\to X^*$ by setting for each $x\in X$

$$\langle x, f(t) \rangle = \begin{cases} \rho(f_x)(t)\chi_{E_n}(t) & \text{if } t \in E_n \\ 0 & \text{if } t \notin \bigcup_n E_n \end{cases}$$

For each $t \in E_n$ the function $x \longrightarrow \langle x, f(t) \rangle$ is linear and $|\langle x, f(t) \rangle| \leqslant n ||x||$. If $t \notin \bigcup_n E_n$, then f(t) = 0. It follows that $f(t) \in X^*$, for every t.

Since $\langle x, f \rangle \stackrel{a.e.}{=} f_x \in HK[0, 1]$, we get the representation

$$\langle x, \Phi(I) \rangle = (HK) \int_{I} \langle x, f(t) \rangle dt$$
 for every $I \in \mathcal{I}$. (4)

of Φ as an HKG-integral of f.

It follows from the construction of f that it is w^* -scalarly bounded, hence Gelfand integrable on every E_n . It is a consequence of lifting measurability properties that ||f|| is measurable on every E_n , and so on [0,1].

If X^* has the WRNP, then according to [14, Proposition 12.3] and [14, Corollary 3.1.], f is Pettis integrable and scalarly bounded on each E_n . Thus, we can formulate the following consequence of the proof of Theorem 3.1:

Corollary 3.2. Assume that $\Phi: \mathcal{I} \to X^*$ is an HKG-primitive. Then there exists a function $f: [0,1] \to X^*$ such that f is a weak*-pseudo-derivative of Φ and there exists a sequence of pairwise disjoint sets $E_n \in \mathcal{L}$ such that $\bigcup_n E_n = [0,1]$, f is weak*-scalarly bounded and Gelfand integrable on every E_n , $n \in \mathbb{N}$, $AW_{\Phi}^*(E_n) < \infty$ and ||f|| is measurable.

If X^* has the WRNP, then f and the sets E_n $n \in \mathbb{N}$ can be taken in such a way that f is Pettis integrable and scalarly bounded on each E_n .

If $V_{\Phi} \ll \lambda$, then by Proposition 2.6, AV_{Φ} is locally bounded. Consequently, in view of (1), AW_{Φ}^* is locally bounded. Thus, the following result is a direct consequence of Theorem 3.1.

Proposition 3.3. Let $\Phi: \mathcal{I} \to X^*$ be additive and such that $V_{\Phi} \ll \lambda$. Then Φ is an HKG-primitive.

4. Henstock-Kurzweil-Pettis integral.

We begin with the following characterization of Pettis integrability that holds true in case of an arbitrary perfect measure in place of the Lebesgue one.

Proposition 4.1. For a scalarly integrable function $f:[0,1] \to X$ the following conditions are equivalent:

- 1. f is Pettis integrable;
- 2. the mapping $X^* \ni x^* \longrightarrow x^* f \in L_1[0,1]$ is $\tau_c(X^*,X)$ -norm continuous;
- 3. the mapping $X^* \ni x^* \longrightarrow x^* f \in L_1[0,1]$ is $\tau(X^*,X)$ -norm continuous.

Proof. $(i) \Rightarrow (ii)$ Since f is Pettis integrable, the functional $x^* \longrightarrow \int_E \langle x^*, f(t) \rangle dt$ is, for each $E \in \mathcal{L}$, weak*-continuous (cf. [14]). Due to Stegall's result [8], the set $\nu_f(\mathcal{L})$ is norm relatively compact. Hence, if $x_{\alpha}^* \stackrel{\tau_c(X^*,X)}{\longrightarrow} x_0^*$, then $x_{\alpha}^* \longrightarrow x_0^*$ uniformly on $\nu_f(\mathcal{L})$. It follows that $\lim_{\alpha} \int_0^1 |x_{\alpha}^* f(t) - x_0^* f(t)| dt = 0$.

- $(i) \Rightarrow (iii)$ The proof is almost the same.
- $\begin{array}{ccc} (iii) \Rightarrow (i) & \text{If } x_{\alpha}^* \stackrel{\tau(X^*,X)}{\longrightarrow} x_0^*, \text{ then } \int_E \langle x_{\alpha}^*, f(t) \rangle \, dt \longrightarrow \int_E \langle x_0^*, f(t) \rangle \, dt \text{ for each } E \in \mathcal{L}. \text{ Thus, the functional } x^* \longrightarrow \int_E \langle x^*, f(t) \rangle \, dt \text{ is, for each } E \in \mathcal{L}, \text{ weak*-continuous. Consequently, } f \text{ is Pettis integrable (see [14]).} \end{array}$
- $(ii) \Rightarrow (i)$ The proof is the same, but now we assume that $B(X^*) \ni x_{\alpha}^* \xrightarrow{\sigma(X^*,X)} x_0^*$. We obtain now the weak* continuity of the functionals $x^* \longrightarrow \int_E \langle x^*, f(t) \rangle dt$ on $B(X^*)$, but due to the Banach-Dieudonné Theorem (see [12, p. 154]) this yields its weak* continuity. Consequently, f is Pettis integrable (see [14]).

In order to obtain a complete characterization of the HKP-primitive of functions taking values in a dual space with the WRNP, we need some preliminary results.

Proposition 4.2. Assume that $\Phi: \mathcal{I} \to X$ is of the form

$$\Phi(I) = (HKP) \int_I f(t) dt$$
, for each $I \in \mathcal{I}$.

Then, for each $I \in \mathcal{I}$, the mapping $x^* \longrightarrow \int_I \langle x^*, f(t) \rangle dt$ is weak*-continuous. Moreover, there exists a partition $[0,1] = \bigcup_k H_k$ such that, for every $k \in \mathbb{N}$, f is Pettis integrable and scalarly bounded on H_k , $AW_{\Phi}^w(H_k) < \infty$ and the functional $x^* \longrightarrow V_{x^*\Phi}(H_k)$ is $\tau_c(X^*, X)$ -continuous.

Proof. The first continuity fact has been proven in [7]. Exactly as in the proof of Theorem 3.1 one can obtain a sequence of pairwise disjoint sets $E_n \in \mathcal{L}$ such that $AW_{\Phi}^w(E_n) < \infty$, for each $n \in \mathbb{N}$. It follows also from [7, Corollary 1] that there exists a decomposition $[0,1] = \bigcup_k F_k$ into sets of positive measure such that f is Pettis integrable and scalarly bounded on each F_k . Denote by $\{H_k : k \in \mathbb{N}\}$ the collection of all intersections $E_n \cap F_m$ of positive measure. Then, by Proposition 4.1, for each k, the function $x^* \longrightarrow x^* f|_{H_k}$ is $\tau_c(X^*, X)$ -norm continuous as a map from X^* to $L_1(\lambda|_{H_k})$, because f is Pettis integrable on H_k . Consequently, if $x_{\alpha}^* \xrightarrow{\tau_c(X^*, X)} x_0^*$, then according to [4] and [6] we have

$$\lim_{\alpha} V_{(x_{\alpha}^* - x_0^*)\Phi}(H_k) = \lim_{\alpha} \int_{H_k} |x_{\alpha}^* f(t) - x_0^* f(t)| \, dt = 0.$$

Lemma 4.3. (see [1, Lemma 3.3]) Let X be a Banach space and let $\nu : \mathcal{L} \to Y$ be a λ -continuous measure of finite variation. If $\Phi \colon \mathcal{I} \to X$ is defined by $\Phi(I) := \nu(I)$, for all $I \in \mathcal{I}$, then V_{Φ} is finite, $V_{\Phi} \ll \lambda$ and $V_{\Phi}(E) \leqslant |\nu|(E)$, whenever $E \in \mathcal{L}$.

Theorem 4.4. Let X be a Banach space. Consider the following two properties of an additive interval function $\Phi: \mathcal{I} \to X$:

- (k) $W_{\Phi}^{w} \ll \lambda$ and there exists a decomposition $[0,1] = \bigcup_{k} H_{k}$ of [0,1] into sets of positive measure such that for every $k \in \mathbb{N}$ the function $x^{*} \longrightarrow V_{x^{*}\Phi}(H_{k})$ is $\tau(X^{*}, X)$ -continuous and $AW_{\Phi}^{w}(H_{k}) < \infty$.
- (kk) There is an HKP-integrable function $f:[0,1] \to X$ such that

$$\langle x^*, \Phi(I) \rangle = (HK) \int_I \langle x^*, f(t) \rangle dt$$
 for every $I \in \mathcal{I}$.

If $(k) \Rightarrow (kk)$ for every additive $\Phi: \mathcal{I} \to X$, then X has the WRNP.

Proof. Let $\nu: \mathcal{L} \to X$ be a λ -continuous measure of finite variation. Define $\Phi: \mathcal{I} \to X$ by $\Phi(I) := \nu(I)$. It follows from Lemma 4.3 that $V_{\Phi} \ll \lambda$ and V_{Φ} is finite. So $\Phi: \mathcal{I} \to X$ is an additive interval measure such that $V_{x^*\Phi} \ll \lambda$ for every $x^* \in X^*$. Moreover, $V_{x^*\Phi}(E) \leqslant |x^*\nu|(E)$, for every $E \in \mathcal{L}$. Let $\langle x_{\alpha}^* \rangle \subset B(X^*)$ be a net of functionals that is $\tau(X^*, X)$ -convergent to 0. Since $\nu(\mathcal{L})$ is a weakly

relatively compact subset of X, the net $\langle x_{\alpha}^* \nu \rangle$ is uniformly convergent to zero on \mathcal{L} . Hence, $\lim_{\alpha} |x_{\alpha}^* \nu| [0,1] = 0$. By the inequality $V_{x_{\alpha}^* \Phi}(E) \leq |x_{\alpha}^* \nu| (E)$, for every $E \in \mathcal{L}$, we have also $\lim_{\alpha} V_{x_{\alpha}^* \Phi}[0,1] = 0$, what proves the weak*-continuity of the map $x^* \to V_{x^* \Phi}[0,1]$.

We are going to prove yet the local boundedness of W_{Φ}^w . To do it notice that the classical Radon-Nikodým Theorem yields the existence of a decomposition $[0,1] = \bigcup_k H_k$ such that $|\nu|(E) \leqslant k|E|$, for every measurable $E \subset H_k$. It follows that

$$\frac{V_{x^*\Phi}(E)}{|E|} \leqslant \frac{|x^*\nu|(E)}{|E|} \leqslant k$$

and hence $AW_{\Phi}^{w}(H_{k}) < \infty$.

Thus, condition (k) is satisfied. Hence, there is a Henstock-Kurzweil-Pettis integrable function $f:[0,1]\to X$ such that

$$\Phi(I) = (HKP) \int_I f(t) dt, \quad \text{for every } I \in \mathcal{I}.$$

Proceeding as in the proof of [2, Theorem 4.5] we see that f is also Pettis integrable and ν is its indefinite Pettis integral.

Proposition 4.5. Let X be an arbitrary Banach space and $\Phi: \mathcal{I} \to X$ be an additive interval function such that $W_{\Phi}^w \ll \lambda$. Assume that there is a decomposition $[0,1] = \bigcup_k H_k$ into measurable sets of positive measure such that $V_{x^*\Phi}(H_k) < \infty$ for every $k \in \mathbb{N}$ and every $x^* \in X^*$ and, for every $k \in \mathbb{N}$, the function $x^* \to V_{x^*\Phi}(H_k)$ is sequentially weak*-continuous.

If $f: [0,1] \to X$ is a scalarly measurable function, then the set

$$K = \left\{ x^* \in X^* : x^*f \in \mathit{HK}[0,1] \ \text{ and } \ x^*\varPhi(I) = (\mathit{HK}) \int_I \langle x^*, f(t) \rangle \, dt, \ \forall \ I \in \mathcal{I} \right\}$$

 $is\ sequentially\ weak^*$ -closed.

If for every $k \in \mathbb{N}$, the function $x^* \to V_{x^*\Phi}(H_k)$ is $\tau(X^*, X)$ -continuous and f is Pettis integrable on H_k , then K is weak*-closed.

Proof. It is obvious that $K \neq \emptyset$ and K is convex. Notice first that if $x^* \in K$, then $(x^* \Phi)' = x^* f$ a.e. (see [10]). Let $\{x_n^*\} \subset K$ be such that $x_n^* \to x_0^*$ in the w^* -topology. We may assume, without loss of generality, that all x_n^* , $n = 0, 1, 2, \ldots$ belong to $B(X^*)$. By hypothesis $V_{x_0^* \Phi} \ll \lambda$, and so there exists $g \in HK[0, 1]$ such that $x_0^* \Phi(I) = (HK) \int_I g(t) \, dt$, for all $I \in \mathcal{I}$ (cf. [3]).

By the assumption and by [6, Corollary 3] we have, for each $k \in \mathbb{N}$,

$$\lim_{n} \int_{H_k} |x_n^* f(t) - g(t)| dt = \lim_{n} V_{(x_n^* - x_0^*)\Phi}(H_k) = 0.$$

Hence, there is a subsequence $\{x_{k,n_m}^*\}_m$ of $\{x_n^*\}$ with $\lim_m x_{k,n_m}^* f = g$, a.e. on H_k . It follows that $g = x_0^* f$ a.e. and so $x_0^* f \in HK[0,1]$. Moreover

$$\lim_m \int_I \langle x_{k,n_m}^*, f(t) \rangle \, dt = \lim_m \langle x_{k,n_m}^*, \varPhi(I) \rangle = \langle x_0^*, \varPhi(I) \rangle = \int_I \langle x_0^*, f(t) \rangle \, dt \, .$$

This yields $x_0^* \in K$ and so K is weak* sequentially closed.

Assume now that f is Pettis integrable on every H_k . We are going to prove that K is weak*-closed. We know that for each $k \in \mathbb{N}$ the function $x^* \longrightarrow x^*g|_{H_k}$ is $\tau(X^*,X)$ -norm continuous as a map from X^* to $L_1(\lambda|_{H_k})$. Consequently, if $x_{\alpha}^* \stackrel{\tau(X^*,X)}{\longrightarrow} x_0^*$, then

$$\lim_{\alpha} \int_{H_k} |x_{\alpha}^* f(t) - x_0^* f(t)| \, dt = 0.$$

By hypothesis $V_{x_0^*\Phi} \ll \lambda$, and so there exists $g \in HK[0,1]$ such that $x_0^*\Phi(I) = (HK) \int_I g(t) dt$, for all $I \in \mathcal{I}$ and so [6, Corollary 3] we have

$$\lim_{\alpha} \int_{H_k} |x_{\alpha}^* f(t) - g(t)| dt = \lim_{\alpha} V_{(x_{\alpha}^* - x_0^*)} \Phi(H_k) = 0.$$

It follows that $x_0^* f = g \in HK[0,1]$. Moreover

$$\lim_{\alpha} \int_{I} \langle x_{\alpha}^{*}, f(t) \rangle \, dt = \lim_{\alpha} \langle x_{\alpha}^{*}, \varPhi(I) \rangle = \langle x_{0}^{*}, \varPhi(I) \rangle = \int_{I} \langle x_{0}^{*}, f(t) \rangle \, dt$$

and so $x_0^* \in K$. Thus, K is $\tau(X^*, X)$ -closed, and as it is convex, it is also weak*-closed.

Now we are ready to prove the main result of this section.

Theorem 4.6. Let X be a Banach space such that X^* has the WRNP and let $\Phi: \mathcal{I} \to X^*$ be an additive interval measure. Then the following two conditions are equivalent:

- (j) $W_{\Phi}^{w} \ll \lambda$ and there exists a decomposition $[0,1] = \bigcup_{k} H_{k}$ of [0,1] into sets of positive measure such that for every $k \in \mathbb{N}$ the function $x^{**} \longrightarrow V_{x^{**}\Phi}(H_{k})$ is weak*-continuous and $AW_{\Phi}^{*}(H_{k}) < \infty$.
- (jj) There is an HKP-integrable function $f:[0,1] \to X^*$ such that

$$\langle x^{**}, \varPhi(I) \rangle = (HK) \int_I \langle x^{**}, f(t) \rangle dt \quad \text{for every } I \in \mathcal{I}.$$

Moreover, f can be chosen in such a way that ||f|| is a measurable function.

Proof. The implication $(jj) \Rightarrow (j)$ is a particular case of Proposition 4.2. In order to prove the implication $(j) \Rightarrow (jj)$, we may apply Theorem 3.1 to conclude that there exists a function $f:[0,1] \to X^*$ that is HKG-integrable on [0,1] and Pettis integrable on each H_k , $k \in \mathbb{N}$. Proposition 4.5 yields the HKP-integrability of f on [0,1].

Remark 4.7. According to Remark 2.7 each strongly measurable Pettis integrable (and hence also Henstok-Kurzweil-Pettis integrable) function with nowhere differentiable Pettis integral satisfies the conditions (j) and (jj) of Theorem 4.6 and has non- σ -finite variational measure V_{Φ} .

Bibliography

- [1] B. Bongiorno, L. Di Piazza and K. Musiał, A variational Henstock integral characterization of the Radon-Nikodým property, Illinois J. Math. **53** (2009), 87–99.
- [2] B. Bongiorno, L. Di Piazza and K. Musiał, A characterization of the weak Radon-Nikodým property by finitely additive interval functions, Bull. Australian Math. Soc. 80 (2009), 476–485.
- [3] B. Bongiorno, L. Di Piazza, V. Skvortsov, A new full descriptive characterization of Denjoy-Perron integral, Real Analysis Exchange 21 (1995/96), 256–263.
- [4] B. Bongiorno, L. Di Piazza, V. Skvortsov, *The essential variation of a function and some convergence theorems*, Analysis Math. **22** (1996), 3–12.
- [5] S.J. Dilworth and M. Girardi, Nowhere weak differentiability of the Pettis integral, Quest. Math. 18 (1995), 365–380.
- [6] L. Di Piazza, Varational measures in the theory of the integration in \mathbb{R}^m , Czechos. Math. Jour. **51**(126) (2001), no. 1, 95–110.
- [7] L. Di Piazza and K. Musiał, Characterizations of Henstock-Kurzweil-Pettis integrable functions, Studia Math. 176 (2006), 159–176.
- [8] D. Fremlin and M. Talagrand, A decomposition theorem for additive set functions and applications to Pettis integral and ergodic means, Math. Z. 168 (1979), 117–142.
- [9] J.L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115–133.
- [10] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in Math. vol. 4 (1994), AMS.
- [11] R.A. Gordon, Differentation in Banach spaces, preprint.
- [12] R.B. Holmes, Geometric Functional Analysis and its Applications, Graduate Texts in Math., vol. 24, Springer-Verlag, 1975.
- [13] V. Marraffa, A descriptive characterization of the variational Henstock integral, Proceedings of the International Mathematics Conference (Manila, 1998), Matimyás Mat. 22 (1999), no. 2, 73–84.
- [14] K. Musiał, *Topics in the theory of Pettis integration*, Rend. Istit. Mat. Univ. Trieste **23** (1991), 177–262.
- [15] K. Musiał, *Pettis integral*, Handbook of Measure Theory I, E. Pap, ed., Elsevier, Amsterdam (2002), 531–586.
- [16] B.J. Pettis, On integration in vector spaces, TAMS (1938), 277–304.
- [17] B.S. Thomson, Derivatives of Interval Functions, Memoirs AMS 452 (1991).

Addresses: Benedetto Bongiorno and Luisa Di Piazza: Department of Mathematics, University of Palermo, Via Archirafi 34, 90123 Palermo, Italy;
Kazimierz Musiał: Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.

 $\textbf{E-mail:} \ bbongi@math.unipa.it, dipiazza@math.unipa.it, musial@math.uni.wroc.pl\\$

Received: 23 April 2013; revised: 3 July 2013