5 research outputs found

    JNK Activation Correlates with Cognitive Impairment and Alteration of the Post-Synaptic Element in the 5xFAD AD Mouse Model

    Get PDF
    The c-Jun N-terminal kinases (JNKs) are a family of proteins that, once activated by stress stimuli, can alter neuronal functions and survival. The JNK cascade plays a crucial role in the post-synaptic neuronal compartment by altering its structural organization and leading, at worst, to an overall impairment of neuronal communication. Increasing evidence suggests that synaptic impairment is the first neurodegenerative event in Alzheimer’s disease (AD). To better elucidate this mechanism, we longitudinally studied 5xFAD mice at three selected time points representative of human AD symptom progression. We tested the mice cognitive performance by using the radial arm water maze (RAWM) in parallel with biochemical evaluations of post-synaptic enriched protein fraction and total cortical parenchyma. We found that 5xFAD mice presented a strong JNK activation at 3.5 months of age in the post-synaptic enriched protein fraction. This JNK activation correlates with a structural alteration of the post-synaptic density area and with memory impairment at this early stage of the disease that progressively declines to cause cell death. These findings pave the way for future studies on JNK as a key player in early neurodegeneration and as an important therapeutic target for the development of new compounds able to tackle synaptic impairment in the early phase of AD pathology

    Extracellular Vesicles in Cancer Drug Resistance: Implications on Melanoma Therapy

    No full text
    Extracellular vesicles (EVs) are involved in the pathogenesis of neoplastic diseases. Their role in mediating drug resistance has been widely described in several types of cancers, including melanoma. EVs can mediate drug resistance through several different mechanisms, such as drug- sequestration, transfer of pro-survival proteins and RNA, induction of cancer stem cell-like features and interaction with cells of the tumor microenvironment and immune-system. Melanoma is a highly immunogenic tumor originating from the malignant transformation of melanocytes. Several therapeutic strategies currently used in the treatment of melanoma and the combination of BRAF and MEK-inhibitors, as well as immune check-point inhibitors (ICI), have consistently improved the overall survival time of melanoma patients. However, the development of resistance is one of the biggest problems leading to a poor clinical outcome, and EVs can contribute to this. EVs isolated from melanoma cells can contain “sequestered” chemotherapeutic drugs in order to eliminate them, or bioactive molecules (such as miRNA or proteins) that have been proven to play a crucial role in the transmission of resistance to sensitive neoplastic cells. This leads to the hypothesis that EVs could be considered as resistance-mediators in sensitive melanoma cells. These findings are a pivotal starting point for further investigations to better understand EVs’ role in drug resistance mechanisms and how to target them. The purpose of this review is to summarize knowledge about EVs in order to develop a deeper understanding of their underlying mechanisms. This could lead to the development of new therapeutic strategies able to bypass EV-mediated drug-resistance in melanoma, such as by the use of combination therapy, including EV release inhibitors

    The Stress c-Jun N-terminal Kinase Signaling Pathway Activation Correlates with Synaptic Pathology and Presents A Sex Bias in P301L Mouse Model of Tauopathy

    No full text
    Pathological Tau (P-Tau) leads to dementia and neurodegeneration in tauopathies, including Alzheimer's disease. The P301L transgenic mice well mimic human tauopathy features; P-Tau localizes also at the dendritic spine level and this correlates with synaptic markers down-regulation. Importantly, tg female present a more severe pathology compared to male mice. We describe JNK activation in P301L-tg mice, characterizing by P-JNK and P-c-Jun, cleaved-Caspase-3, P-PSD95 and P-Tau (direct JNK-targets) increased levels in tg vs control mice. These data indicate that JNK stress pathway is involved in neuronal degenerative mechanisms of this mouse model. In addition, P-JNK level is higher in female compared to male tg mice, underlying a sexual dimorphism in the JNK pathway activation. The behavioral studies highlight that tg female present major cognitive and locomotor defects, strongly correlated with a more severe synaptic injury, in comparison to tg male. Notably, at the dendritic spine level, JNK is powerfully activated and its level reveals a sexual dimorphism that is coherent with behavioral defects and spine pathology. The P301L's synaptic pathology is characterized by a strong increase of P-PSD95/PSD95 and P-JNK/JNK ratios and by an augmented level of cleaved-Caspase-3 and a decrease of Drebrin level in the post-synaptic elements. These results suggest that JNK plays a key role in synaptopathy of P301L mice. Importantly, until now, there are any efficient treatments against synaptic pathology and JNK could represent an interesting target to tackle P-Tau-induced synaptic pathology. It will be important to test specific JNK inhibitors to verify their potential neuroprotective effect

    Tumor-Associated Macrophages in Canine Oral and Cutaneous Melanomas and Melanocytomas: Phenotypic and Prognostic Assessment

    No full text
    The tumor microenvironment is a complex system, where neoplastic cells interact with immune and stromal cells. Tumor-associated macrophages (TAMs) are considered among the most numerically and biologically noteworthy cellular components in tumors and the attention on this cellular population has been growing during the last decade, both for its prognostic role and as a potential future therapeutic target. Melanoma, particularly the oral form, despite being one of the most immunogenic tumors, bears a poor prognosis in dogs and humans, due to its highly aggressive biological behavior and limited therapeutic options. The aims of this study are to characterize and quantify TAMs (using CD163, CD204, Iba1, and MAC387) in canine melanocytic tumors and to evaluate the association of these markers with diagnosis, histologic prognostic features, presence of metastases, and outcome, and to provide preliminary data for possible future therapies targeting TAMs. Seventy-two melanocytic tumors (27 oral melanomas, 25 cutaneous melanomas, 14 cutaneous melanocytomas, and 6 oral melanocytomas) were retrospectively selected and submitted to immunohistochemistry and double immunofluorescence. Double immunolabeling revealed that most CD163(+) and CD204(+)cells co-expressed Iba1, which labeled also dendritic cells. Iba1 was instead rarely co-expressed with MAC387. Nevertheless, the expression of macrophagic markers showed a mild to moderate association among the four markers, except for CD204 and MAC387. The number of CD163(+), CD204(+), and MAC387(+) cells was significantly higher in oral melanomas compared to oral melanocytomas (p < 0.001; p < 0.05 and p < 0.01, respectively), whereas Iba1 was differentially expressed in cutaneous melanomas and melanocytomas (p < 0.05). Moreover, CD163, IBA1 and MAC387 expression was associated with nuclear atypia and mitotic count. The number of CD163(+)cells was associated with the presence of metastases and tumor-related death in oral melanocytic tumors (p < 0.05 and p = 0.001, respectively)
    corecore