8 research outputs found

    Tolvaptan treatment for severe neonatal autosomal-dominant polycystic kidney disease

    No full text
    Severe neonatal autosomal-dominant polycystic kidney disease (ADPKD) is rare and easily confused with recessive PKD. Managing such infants is difficult and often unsuccessful

    Glutathione depletion and increased apoptosis rate in human cystinotic proximal tubular cells

    Full text link
    We have determined levels of glutathione (GSH), ATP, mitochondrial complex activity and apoptosis rate in proximal tubular cells (PTCs) exfoliated from urine in cystinotic (n=9) and control (n=9) children. Intracellular GSH was significantly depleted in cystinotic PTCs compared with controls (6.8nmol GSH/mg protein vs 11.8nmol GSH/mg protein; P<0.001), but there were no significant differences in mitochondrial complex activities or ATP levels under basal conditions. Cystinotic PTCs showed significantly increased apoptosis rate. After PTCs had been stressed by hypoxia, there was further depletion of GSH in cystinotic and control PTCs (2.4nmol GSH/mg protein vs 7.2nmol GSH/mg protein; P<0.001). Hypoxic stress led to increased complexI and complexIV activities in control but not in cystinotic PTCs. ATP levels were significantly reduced in cystinotic PTCs after hypoxic stress (12.2nmol/mg protein vs 26.9nmol/mg protein; P<0.001). GSH depletion occurs in this in vitro model of cystinotic PTCs, is exaggerated by hypoxic stress and may contribute to reduced ATP and failure to increase complexI/IV activities. Apoptotic rate is also increased, and these mechanisms may contribute to cellular dysfunction in cultured, human cystinotic PTC

    Mutations in phospholipase C epsilon 1 are not sufficient to cause diffuse mesangial sclerosis

    Get PDF
    Diffuse mesangial sclerosis occurs as an isolated abnormality or as a part of a syndrome. Recently, mutations in phospholipase C epsilon 1 (PLCE1) were found to cause a nonsyndromic, autosomal recessive form of this disease. Here we describe three children from one consanguineous kindred of Pakistani origin with diffuse mesangial sclerosis who presented with congenital or infantile nephrotic syndrome. Homozygous mutations in PLCE1 (also known as KIAA1516, PLCE, or NPHS3) were identified following genome-wide mapping of single-nucleotide polymorphisms. All affected children were homozygous for a four-basepair deletion in exon 3, which created a premature translational stop codon. Analysis of the asymptomatic father of two of the children revealed that he was also homozygous for the same mutation. We conclude this nonpenetrance may be due to compensatory mutations at a second locus and that mutation within PLCE1 is not always sufficient to cause diffuse mesangial sclerosi

    Mutations in PIK3R1 cause SHORT syndrome

    No full text
    SHORT syndrome is a rare, multisystem disease characterized by short stature, anterior-chamber eye anomalies, characteristic facial features, lipodystrophy, hernias, hyperextensibility, and delayed dentition. As part of the FORGE (Finding of Rare Disease Genes) Canada Consortium, we studied individuals with clinical features of SHORT syndrome to identify the genetic etiology of this rare disease. Whole-exome sequencing in a family trio of an affected child and unaffected parents identified a de novo frameshift insertion, c.1906_1907insC (p.Asn636Thrfs(∗)18), in exon 14 of PIK3R1. Heterozygous mutations in exon 14 of PIK3R1 were subsequently identified by Sanger sequencing in three additional affected individuals and two affected family members. One of these mutations, c.1945C>T (p.Arg649Trp), was confirmed to be a de novo mutation in one affected individual and was also identified and shown to segregate with the phenotype in an unrelated family. The other mutation, a de novo truncating mutation (c.1971T>G [p.Tyr657(∗)]), was identified in another affected individual. PIK3R1 is involved in the phosphatidylinositol 3 kinase (PI3K) signaling cascade and, as such, plays an important role in cell growth, proliferation, and survival. Functional studies on lymphoblastoid cells with the PIK3R1 c.1906_1907insC mutation showed decreased phosphorylation of the downstream S6 target of the PI3K-AKT-mTOR pathway. Our findings show that PIK3R1 mutations are the major cause of SHORT syndrome and suggest that the molecular mechanism of disease might involve downregulation of the PI3K-AKT-mTOR pathway
    corecore