23 research outputs found

    Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19

    Get PDF
    SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19.Fil: Sekine, Takuya. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Perez Potti, André. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Rivera Ballesteros, Olga. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Strålin, Kristoffer. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gorin, Jean Baptiste. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Olsson, Annika. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Llewellyn Lacey, Sian. University Hospital of Wales; Reino UnidoFil: Kamal, Habiba. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Bogdanovic, Gordana. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Muschiol, Sandra. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Wullimann, David J.. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Kammann, Tobias. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Emgård, Johanna. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Parrot, Tiphaine. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Folkesson, Elin. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Rooyackers, Olav. Karolinska Huddinge Hospital. Karolinska Institutet; Suecia. Karolinska University Hospital; SueciaFil: Eriksson, Lars I.. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Henter, Jan Inge. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Sönnerborg, Anders. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Allander, Tobias. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Albert, Jan. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Klingstrom, Jonas. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gredmark Russ, Sara. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Björkström, Niklas K.. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Sandberg, Johan K.. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Price, David A.. Cardiff University School of Medicine; Reino UnidoFil: Ljunggren, Hans Gustaf. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Aleman, Soo. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Buggert, Marcus. Karolinska Huddinge Hospital. Karolinska Institutet; Sueci

    Probabilistic classification of anti-SARS-CoV-2 antibody responses improves seroprevalence estimates.

    Get PDF
    OBJECTIVES: Population-level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data-driven manner, leading to uncertainty when classifying low-titer responses. To improve upon this, we evaluated cutoff-independent methods for their ability to assign likelihood of SARS-CoV-2 seropositivity to individual samples. METHODS: Using robust ELISAs based on SARS-CoV-2 spike (S) and the receptor-binding domain (RBD), we profiled antibody responses in a group of SARS-CoV-2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines-linear discriminant analysis learner (SVM-LDA) suited for this purpose. RESULTS: In the training data from confirmed ancestral SARS-CoV-2 infections, 99% of participants had detectable anti-S and -RBD IgG in the circulation, with titers differing > 1000-fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3-6SD from the mean of pre-pandemic negative controls (n = 595). In contrast, SVM-LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50-99% likelihood, and 4.0% (n = 203) to have a 10-49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD-based methods, such tools allow for more statistically-sound seropositivity estimates in large cohorts. CONCLUSION: Probabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability

    Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19

    Get PDF
    SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19

    Small molecule inhibitors of type III secretion and their effect on chlamydia development

    Get PDF
    Chlamydiae are obligate intracellular pathogens that cause a variety of diseases with clinical and public health importance. Like many Gram-negative bacteria, Chlamydiae employ a type III secretion (T3S) system for invasion and establishment of a protected intracellular niche for successful replication and survival within host cells. Understanding the role of T3S and bacterial effector proteins in Chlamydia infection will provide new insights into chlamydial pathogenesis and is important to identify novel therapeutic targets for drug intervention. In this thesis we employed different small molecule inhibitors of T3S activity in Yersinia, named INPs, and analyzed their effect on Chlamydia development. In addition, we identified and characterized a new family of T3S effector proteins. In paper I, we assessed the effect of INP0400 on C. trachomatis development and invasion. INP0400 caused a dose and growth phase-dependent inhibition of RB multiplication at micromolar concentrations. When INP0400 was given at different stages during the infectious cycle, we observed a partial inhibition of Chlamydia entry, inhibition of translocation of IncG and IncA and a bacterial detachment from the inclusion membrane during the late stage of infection concomitant with an inhibition of RB to EB conversion causing a marked decrease in infectivity. Our data suggest that INPs impair progression through the infectious cycle suggesting that the T3S system is essential for Chlamydia pathogenesis. In paper II, we found that INP0010 displays a strong growth inhibitory effect on C. pneumoniae development, affects translocation of the C. pneumoniae effector proteins IncB and IncC and leads to down-regulation of T3S associated genes collectively suggesting that INP0010 impairs T3S activity in C. pneumoniae. In paper III, we further investigated the effect of INPs on Chlamydia invasion. We show that INPs impair Chlamydia development after entry into host cells because the efficiency of C. trachomatis L2 and C. caviae entry into epithelial cells was not altered in the presence of INPs. Moreover, entry appeared normally with recruitment of actin and the small GTPases Rac, Cdc42 and Arf6 to the bacterial entry site. Finally, in paper IV we set out to identify novel T3S effectors in Chlamydia. We found a family of chlamydial proteins, represented by a C-terminal domain of unknown function referred to as DUF582 that contains an amino-terminal T3S signal. C. trachomatis members of this family were expressed late during the infectious cycle and found to be secreted into the lumen of the inclusion and the cytoplasm of infected cells

    Small molecule inhibitors of the <it>Yersinia </it>type III secretion system impair the development of <it>Chlamydia </it>after entry into host cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Chlamydiae </it>are obligate intracellular pathogens that possess a type III secretion system to deliver proteins into the host cell during infection. Small molecule inhibitors of type III secretion in <it>Yersinia</it>, termed INPs (Innate Pharmaceuticals AB) were reported to strongly inhibit <it>Chlamydia </it>growth in epithelial cells. In this study we have analyzed the effect of these drugs on bacterial invasiveness.</p> <p>Results</p> <p>We demonstrate that INPs affect <it>Chlamydia </it>growth in a dose dependent manner after bacterial invasion. The efficiency of <it>C. trachomatis </it>L2 and <it>C. caviae </it>GPIC entry into host cells was not altered in the presence of INPs. In <it>C. caviae</it>, entry appears to proceed normally with recruitment of actin and the small GTPases Rac, Cdc42 and Arf6 to the site of bacterial entry.</p> <p>Conclusion</p> <p>INPs have a strong inhibitory effect on <it>Chlamydia </it>growth. However, bacterial invasion is not altered in the presence of these drugs. In the light of these results, we discuss several hypotheses regarding the mode of action of INPs on type III secretion during the <it>Chlamydia </it>infectious cycle.</p

    Identification of a family of effectors secreted by the type III secretion system that are conserved in pathogenic Chlamydiae.

    No full text
    International audienceChlamydiae are Gram-negative, obligate intracellular pathogens that replicate within a membrane-bounded compartment termed an inclusion. Throughout their development, they actively modify the eukaryotic environment. The type III secretion (TTS) system is the main process by which the bacteria translocate effector proteins into the inclusion membrane and the host cell cytoplasm. Here we describe a family of type III secreted effectors that are present in all pathogenic chlamydiae and absent in the environment-related species. It is defined by a common domain of unknown function, DUF582, that is present in four or five proteins in each Chlamydiaceae species. We show that the amino-terminal extremity of DUF582 proteins functions as a TTS signal. DUF582 proteins from C. trachomatis CT620, CT621, and CT711 are expressed at the middle and late phases of the infectious cycle. Immunolocalization further revealed that CT620 and CT621 are secreted into the host cell cytoplasm, as well as within the lumen of the inclusion, where they do not associate with bacterial markers. Finally, we show that DUF582 proteins are present in nuclei of infected cells, suggesting that members of the DUF582 family of effector proteins may target nuclear cell functions. The expansion of this family of proteins in pathogenic chlamydiae and their conservation among the different species suggest that they play important roles in the infectious cycle

    Factor H binding proteins protect division septa on encapsulated Streptococcus pneumoniae against complement C3b deposition and amplification

    No full text
    Streptococcus pneumoniae evades the action of the complement system by expressing an immuno-protective polysaccharide capsule as well as Factor H-binding proteins. Here, Pathak et al. show that these two defence mechanisms are functionally and spatially coordinated on the bacterial cell surface

    Immunomodulatory Effects of Pneumococcal Extracellular Vesicles on Cellular and Humoral Host Defenses

    No full text
    Gram-positive bacteria, including the major respiratory pathogen Streptococcus pneumoniae, were recently shown to produce extracellular vesicles (EVs) that likely originate from the plasma membrane and are released into the extracellular environment. EVs may function as cargo for many bacterial proteins, however, their involvement in cellular processes and their interactions with the innate immune system are poorly understood. Here, EVs from pneumococci were characterized and their immunomodulatory effects investigated. Pneumococcal EVs were protruding from the bacterial surface and released into the medium as 25 to 250 nm lipid stained vesicles containing a large number of cytosolic, membrane, and surface-associated proteins. The cytosolic pore-forming toxin pneumolysin was significantly enriched in EVs compared to a total bacterial lysate but was not required for EV formation. Pneumococcal EVs were internalized into A549 lung epithelial cells and human monocyte-derived dendritic cells and induced proinflammatory cytokine responses irrespective of pneumolysin content. EVs from encapsulated pneumococci were recognized by serum proteins, resulting in C3b deposition and formation of C5b-9 membrane attack complexes as well as factor H recruitment, depending on the presence of the choline binding protein PspC. Addition of EVs to human serum decreased opsonophagocytic killing of encapsulated pneumococci. Our data suggest that EVs may act in an immunomodulatory manner by allowing delivery of vesicle-associated proteins and other macromolecules into host cells. In addition, EVs expose targets for complement factors in serum, promoting pneumococcal evasion of humoral host defense. Importance: Streptococcus pneumoniae is a major contributor to morbidity and mortality worldwide, being the major cause of milder respiratory tract infections such as otitis and sinusitis and of severe infections such as community-acquired pneumonia, with or without septicemia, and meningitis. More knowledge is needed on how pneumococci interact with the host, deliver virulence factors, and activate immune defenses. Here we show that pneumococci form extracellular vesicles that emanate from the plasma membrane and contain virulence properties, including enrichment of pneumolysin. We found that pneumococcal vesicles can be internalized into epithelial and dendritic cells and bind complement proteins, thereby promoting pneumococcal evasion of complement-mediated opsonophagocytosis. They also induce pneumolysin-independent proinflammatory responses. We suggest that these vesicles can function as a mechanism for delivery of pneumococcal proteins and other immunomodulatory components into host cells and help pneumococci to avoid complement deposition and phagocytosis-mediated killing, thereby possibly contributing to the symptoms found in pneumococcal infections

    Structure of the competence pilus major pilin ComGC in Streptococcus pneumoniae

    Get PDF
    Type IV pili are important virulence factors on the surface of many pathogenic bacteria and have been implicated in a wide range of diverse functions, including attachment, twitching motility, biofilm formation, and horizontal gene transfer. The respiratory pathogen Streptococcus pneumoniae deploys type IV pili to take up DNA during transformation. These “competence pili” are composed of the major pilin protein ComGC and exclusively assembled during bacterial competence, but their biogenesis remains unclear. Here, we report the high resolution NMR structure of N-terminal truncated ComGC revealing a highly flexible and structurally divergent type IV pilin. It consists of only three α-helical segments forming a well-defined electronegative cavity and confined electronegative and hydrophobic patches. The structure is particularly flexible between the first and second α-helix with the first helical part exhibiting slightly slower dynamics than the rest of the pilin, suggesting that the first helix is involved in forming the pilus structure core and that parts of helices two and three are primarily surface-exposed. Taken together, our results provide the first structure of a type IV pilin protein involved in the formation of competence-induced pili in Gram-positive bacteria and corroborate the remarkable structural diversity among type IV pilin proteins

    pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion

    No full text
    Streptococcus pneumoniae is the main cause of bacterial meningitis, a life-threating disease with a high case fatality rate despite treatment with antibiotics. Pneumococci cause meningitis by invading the blood and penetrating the blood–brain barrier (BBB). Using stimulated emission depletion (STED) super-resolution microscopy of brain biopsies from patients who died of pneumococcal meningitis, we observe that pneumococci colocalize with the two BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1). We show that the major adhesin of the pneumococcal pilus-1, RrgA, binds both receptors, whereas the choline binding protein PspC binds, but to a lower extent, only pIgR. Using a bacteremia-derived meningitis model and mutant mice, as well as antibodies against the two receptors, we prevent pneumococcal entry into the brain and meningitis development. By adding antibodies to antibiotic (ceftriaxone)-treated mice, we further reduce the bacterial burden in the brain. Our data suggest that inhibition of pIgR and PECAM-1 has the potential to prevent pneumococcal meningitis.Published versio
    corecore