965 research outputs found
Intrinsic quark transverse momentum in the nucleon from lattice QCD
A better understanding of transverse momentum (k_T-) dependent quark
distributions in a hadron is needed to interpret several experimentally
observed large angular asymmetries and to clarify the fundamental role of gauge
links in non-abelian gauge theories. Based on manifestly non-local gauge
invariant quark operators we introduce process-independent k_T-distributions
and study their properties in lattice QCD. We find that the longitudinal and
transverse momentum dependence approximately factorizes, in contrast to the
behavior of generalized parton distributions. The resulting quark
k_T-probability densities for the nucleon show characteristic dipole
deformations due to correlations between intrinsic k_T and the quark or nucleon
spin. Our lattice calculations are based on N_f=2+1 mixed action propagators of
the LHP collaboration.Comment: 4 pages, 3 figure
Lattice QCD study of the Boer-Mulders effect in a pion
The three-dimensional momenta of quarks inside a hadron are encoded in
transverse momentum-dependent parton distribution functions (TMDs). This work
presents an exploratory lattice QCD study of a TMD observable in the pion
describing the Boer-Mulders effect, which is related to polarized quark
transverse momentum in an unpolarized hadron. Particular emphasis is placed on
the behavior as a function of a Collins-Soper evolution parameter quantifying
the relative rapidity of the struck quark and the initial hadron, e.g., in a
semi-inclusive deep inelastic scattering (SIDIS) process. The lattice
calculation, performed at the pion mass m_pi = 518 MeV, utilizes a definition
of TMDs via hadronic matrix elements of a quark bilocal operator with a
staple-shaped gauge connection; in this context, the evolution parameter is
related to the staple direction. By parametrizing the aforementioned matrix
elements in terms of invariant amplitudes, the problem can be cast in a Lorentz
frame suited for the lattice calculation. In contrast to an earlier nucleon
study, due to the lower mass of the pion, the calculated data enable
quantitative statements about the physically interesting limit of large
relative rapidity. In passing, the similarity between the Boer-Mulders effects
extracted in the pion and the nucleon is noted.Comment: 16 pages, 9 figures, 3 table
Recommended from our members
Ein Vater der kognitiven Psychologie: Adriaan Dingeman de Groot (1914–2006)/A father of cognitive psychology: Adriaan Dingeman de Groot (1914-2006)
Adriaan D. de Groot wurde am 26. Oktober 1914 in Santpoort (Holland) geboren. An der Universität Amsterdam studierte er Physik, Mathematik und Psychologie; daneben betrieb er seine große Leidenschaft, das Schachspiel, in dem er es zu Meisterehren brachte. In seiner bahnbrechenden Promotion (De Groot, 1946; engl. “Thought and Choice in Chess”, 1965) vereinte er sein Interesse am Schach und an der Psychologie und präsentierte eine detaillierte Analyse der Denkvorgänge beim Schachspiel, die einen Meilenstein der beginnenden kognitiven Revolution in der Psychologie setzte und schnell zum Klassiker wurde
Sivers and Boer-Mulders observables from lattice QCD
We present a first calculation of transverse momentum dependent nucleon
observables in dynamical lattice QCD employing non-local operators with
staple-shaped, "process-dependent" Wilson lines. The use of staple-shaped
Wilson lines allows us to link lattice simulations to TMD effects determined
from experiment, and in particular to access non-universal, naively
time-reversal odd TMD observables. We present and discuss results for the
generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS
and DY cases. The effect of staple-shaped Wilson lines on T-even observables is
studied for the generalized tensor charge and a generalized transverse shift
related to the worm gear function g_1T. We emphasize the dependence of these
observables on the staple extent and the Collins-Soper evolution parameter. Our
numerical calculations use an n_f = 2+1 mixed action scheme with domain wall
valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.Comment: 25 pages, 13 figures; version accepted by journal. Contains
additional section explaining and summarizing the methodolog
A facility for pion-induced nuclear reaction studies with HADES
The combination of a production target for secondary beams, an optimized ion optical beam line setting, in-beam detectors for minimum ionizing particles with high rate capability, and an efficient large acceptance spectrometer around the reaction target constitutes an experimental opportunity to study in detail hadronic interactions utilizing pion beams impinging on nucleons and nuclei. For the 0.4-2.0GeV/c pion momentum regime such a facility is located at the heavy ion synchrotron accelerator SIS18 in Darmstadt (Germany). The layout of the apparatus, performance of its components and encouraging results from a first commissioning run are presented
- …