7 research outputs found

    Multiple-Mode Wideband Bandpass Filter Using Split Ring Resonators in a Rectangular Waveguide Cavity

    No full text
    This paper presents a simple split ring resonator excitation to realize a multi-mode wideband bandpass filter in a rectangular waveguide cavity. The proposed resonator employs two rectangular split rings attached with two coaxial probes extended into the cavity to excite two resonant modes, unlike the conventional cavity resonators which employ conductive cylinders in the cavities to achieve the same results. A hybrid magnetic (HM) mode and a hybrid electric (HE) mode are the two hybrid modes excited to realize the wideband bandpass filter. The filter operates at 2.5 GHz center frequency with 53% fractional bandwidth. Finally, the prototypes of a second and a fourth order filter are fabricated for results validation. Measured results are in good agreement with the simulated ones

    Deep Learning Approach for Automatic Microaneurysms Detection

    No full text
    In diabetic retinopathy (DR), the early signs that may lead the eyesight towards complete vision loss are considered as microaneurysms (MAs). The shape of these MAs is almost circular, and they have a darkish color and are tiny in size, which means they may be missed by manual analysis of ophthalmologists. In this case, accurate early detection of microaneurysms is helpful to cure DR before non-reversible blindness. In the proposed method, early detection of MAs is performed using a hybrid feature embedding approach of pre-trained CNN models, named as VGG-19 and Inception-v3. The performance of the proposed approach was evaluated using publicly available datasets, namely “E-Ophtha” and “DIARETDB1”, and achieved 96% and 94% classification accuracy, respectively. Furthermore, the developed approach outperformed the state-of-the-art approaches in terms of sensitivity and specificity for microaneurysms detection

    Surgeons' perspectives on artificial intelligence to support clinical decision-making in trauma and emergency contexts: results from an international survey

    Get PDF
    Background: Artificial intelligence (AI) is gaining traction in medicine and surgery. AI-based applications can offer tools to examine high-volume data to inform predictive analytics that supports complex decision-making processes. Time-sensitive trauma and emergency contexts are often challenging. The study aims to investigate trauma and emergency surgeons' knowledge and perception of using AI-based tools in clinical decision-making processes. Methods: An online survey grounded on literature regarding AI-enabled surgical decision-making aids was created by a multidisciplinary committee and endorsed by the World Society of Emergency Surgery (WSES). The survey was advertised to 917 WSES members through the society's website and Twitter profile. Results: 650 surgeons from 71 countries in five continents participated in the survey. Results depict the presence of technology enthusiasts and skeptics and surgeons' preference toward more classical decision-making aids like clinical guidelines, traditional training, and the support of their multidisciplinary colleagues. A lack of knowledge about several AI-related aspects emerges and is associated with mistrust. Discussion: The trauma and emergency surgical community is divided into those who firmly believe in the potential of AI and those who do not understand or trust AI-enabled surgical decision-making aids. Academic societies and surgical training programs should promote a foundational, working knowledge of clinical AI

    Time for a paradigm shift in shared decision-making in trauma and emergency surgery? Results from an international survey

    Get PDF
    Background Shared decision-making (SDM) between clinicians and patients is one of the pillars of the modern patient-centric philosophy of care. This study aims to explore SDM in the discipline of trauma and emergency surgery, investigating its interpretation as well as the barriers and facilitators for its implementation among surgeons. Methods Grounding on the literature on the topics of the understanding, barriers, and facilitators of SDM in trauma and emergency surgery, a survey was created by a multidisciplinary committee and endorsed by the World Society of Emergency Surgery (WSES). The survey was sent to all 917 WSES members, advertised through the society’s website, and shared on the society’s Twitter profile. Results A total of 650 trauma and emergency surgeons from 71 countries in five continents participated in the initiative. Less than half of the surgeons understood SDM, and 30% still saw the value in exclusively engaging multidisciplinary provider teams without involving the patient. Several barriers to effectively partnering with the patient in the decision-making process were identified, such as the lack of time and the need to concentrate on making medical teams work smoothly. Discussion Our investigation underlines how only a minority of trauma and emergency surgeons understand SDM, and perhaps, the value of SDM is not fully accepted in trauma and emergency situations. The inclusion of SDM practices in clinical guidelines may represent the most feasible and advocated solutions

    Correction: Surgeons’ perspectives on artificial intelligence to support clinical decision-making in trauma and emergency contexts: results from an international survey

    Get PDF

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore