178 research outputs found

    My Journey with Defence Science Journal

    Get PDF
    All these measures contributed considerably to improve the stature of the Journal. However, the full market potential for the Journal in terms of number of subscriptions could not be exploited and the subscriptions could be onlybe raised from about 350 to a maximum of 1100 or 1200.This in itself can be considered a good achievement due to the specialized nature of the Journal. The quality of the contents, editorial and of the production of the Journal were certainly impressive.Defence Science Journal, 2009, 59(4), pp.321-325, DOI:http://dx.doi.org/10.14429/dsj.59.152

    Impact of Dwell Angle on the Electromagnetic Torque Ripplesof the Switched Reluctance Motor

    Get PDF
    Switched reluctance motors (SRM) are emerging as promising competitors to the vector-controlled induction motor (VCIM) drives and permanent magnet (PM) motor drives in the variable-speed drive market owing to their robust nature coupled with low cost, simplicity, and capabilityto operate in harsh environments. They are also suitable for nuclear and aerospace applicationsdue to their low inertia and capability to be fed from a dc supply through a simple power converter.The principle of torque production in SRM makes rotor position information mandatory foreffective control of the drive. The torque produced by any particular phase of the SRM isdependent upon the exciting current and the period during which the current is carried by thatphase winding. The conduction period of any particular phase is termed as dwell angle whenit is specified in terms of rotor angular position. In the present work, the SRM operation has beenanalysed in sensor mode and in sensor-less mode, paying special attention to the relationshipbetween dwell angle and output torque ripple. The performance has been studied for differentvalues of dwell angle and the resultant torque profile has been analysed. From the analysis, amethodology has been devised to deduce an appropriate value of dwell angle for minimising thetorque pulsations, given the values of speed and load torque, thus improving the performanceof the SRM drive

    Edge reconstructions in fractional quantum Hall systems

    Full text link
    Two dimensional electron systems exhibiting the fractional quantum Hall effects are characterized by a quantized Hall conductance and a dissipationless bulk. The transport in these systems occurs only at the edges where gapless excitations are present. We present a {\it microscopic} calculation of the edge states in the fractional quantum Hall systems at various filling factors using the extended Hamiltonian theory of the fractional quantum Hall effect. We find that at ν=1/3\nu=1/3 the quantum Hall edge undergoes a reconstruction as the background potential softens, whereas quantum Hall edges at higher filling factors, such as ν=2/5,3/7\nu=2/5, 3/7, are robust against reconstruction. We present the results for the dependence of the edge states on various system parameters such as temperature, functional form and range of electron-electron interactions, and the confining potential. Our results have implications for the tunneling experiments into the edge of a fractional quantum Hall system.Comment: 11 pages, 9 figures; minor typos corrected; added 2 reference

    Exploring improved holographic theories for QCD: Part I

    Get PDF
    Various holographic approaches to QCD in five dimensions are explored using input both from the putative non-critical string theory as well as QCD. It is argued that a gravity theory in five dimensions coupled to a dilaton and an axion may capture the important qualitative features of pure QCD. A part of the higher alpha' corrections are resummed into a dilaton potential. The potential is shown to be in one-to-one correspondence with the exact beta-function of QCD, and its knowledge determines the full structure of the vacuum solution. The geometry near the UV boundary is that of AdS_5 with logarithmic corrections reflecting the asymptotic freedom of QCD. We find that all relevant confining backgrounds have an IR singularity of the "good" kind that allows unambiguous spectrum computations. Near the singularity the 't Hooft coupling is driven to infinity. Asymptotically linear glueball masses can also be achieved. The classification of all confining asymptotics, the associated glueball spectra and meson dynamics are addressed in a companion paper, ArXiv:0707.1349Comment: 37+23 pages, 11 figures. (v3) Some clarifications and typo corrections. Journal versio

    WEATHER FORECASTING USING ARTIFICIAL NEURAL NETWORKS AND DATA MINING TECHNIQUES

    Get PDF
    Weather forecasts are made by collecting quantitative data about the current state of the atmosphere and using scientific understanding of atmospheric processes to project how the atmosphere will evolve. Weather prediction is basically based upon the historical time series data. The basic Data mining operations and Numerical methods are employed to get a useful pattern from a huge volume of data set. Different testing and training scenarios are performed to obtain the accurate result. To perform these kinds of predictions we are identifying the datasets. Collection of the data sets of a particular region weather report from 1901 to 2001 with 11 attributes. The collected datasets undergo pre-processing. Then clustering operation, Curve fitting and Extrapolation methods are applied, proceeding with back propagation. The Back propagation and Extrapolation results are compared. The Best future results are predicted

    Hamiltonian Description of Composite Fermions: Magnetoexciton Dispersions

    Full text link
    A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in Fractional Quantum Hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=1/3\nu=1/3, 2/5, and 3/7 gapped fractions, and find approximate agreement with numerical results. I also analyse the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 2/5 and 3/7, and it is shown that the spin-polarized 2/5 state, in contrast to the spin-polarized 1/3 state, cannot be described as a simple quantum ferromagnet.Comment: 18 pages, 18 encapsulated ps figure

    Edge reconstruction in the fractional quantum Hall regime

    Full text link
    The interplay of electron-electron interaction and confining potential can lead to the reconstruction of fractional quantum Hall edges. We have performed exact diagonalization studies on microscopic models of fractional quantum Hall liquids, in finite size systems with disk geometry, and found numerical evidence of edge reconstruction under rather general conditions. In the present work we have taken into account effects like layer thickness and Landau level mixing, which are found to be of quantitative importance in edge physics. Due to edge reconstruction, additional nonchiral edge modes arise for both incompressible and compressible states. These additional modes couple to electromagnetic fields and thus can be detected in microwave conductivity measurements. They are also expected to affect the exponent of electron Green's function, which has been measured in tunneling experiments. We have studied in this work the electric dipole spectral function that is directly related to the microwave conductivity measurement. Our results are consistent with the enhanced microwave conductivity observed in experiments performed on samples with an array of antidots at low temperatures, and its suppression at higher temperatures. We also discuss the effects of the edge reconstruction on the single electron spectral function at the edge.Comment: 19 pages, 12 figure

    Fermion Chern Simons Theory of Hierarchical Fractional Quantum Hall States

    Full text link
    We present an effective Chern-Simons theory for the bulk fully polarized fractional quantum Hall (FQH) hierarchical states constructed as daughters of general states of the Jain series, {\it i. e.} as FQH states of the quasi-particles or quasi-holes of Jain states. We discuss the stability of these new states and present two reasonable stability criteria. We discuss the theory of their edge states which follows naturally from this bulk theory. We construct the operators that create elementary excitations, and discuss the scaling behavior of the tunneling conductance in different situations. Under the assumption that the edge states of these fully polarized hierarchical states are unreconstructed and unresolved, we find that the differential conductance GG for tunneling of electrons from a Fermi liquid into {\em any} hierarchical Jain FQH states has the scaling behavior GVαG\sim V^\alpha with the universal exponent α=1/ν\alpha=1/\nu, where ν\nu is the filling fraction of the hierarchical state. Finally, we explore alternative ways of constructing FQH states with the same filling fractions as partially polarized states, and conclude that this is not possible within our approach.Comment: 10 pages, 50 references, no figures; formerly known as "Composite Fermions: The Next Generation(s)" (title changed by the PRB thought police). This version has more references and a discussion of the stability of the new states. Published version. One erroneous reference is correcte

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Influencers on the Russian Twitter: Institutions vs. people in the discussion on migrants

    Get PDF
    With the emergence of discussion platforms like Twitter, the hopes rose that computer-mediated public sphere would become more even in access to discussion than mass-mediatized public sphere of the late 20th century. Scholars have argued that it will eventually form an ‘opinion crossroads’ where conflicts would be discussed by all the parties involved. But today, existing research provides mixed evidence on whether ordinary users, rather than mainstream media and institutional actors, can become influencers in discussions on current issues, e.g. relations between host and migrant communities. We focus on the Twitter discussion about an inter-ethnic conflict in Moscow’s Biryuliovo district in 2013 and aim at defining who were its real influencers by reconstructing the discussion’s web graph, as well as analyzing and juxtaposing its metrics to figures indicating user activity. Our results show that, despite hyperactivity of media accounts, they were largely absent as deliberative influencers, but the place of influencers was occupied by politicized (nationalist and liberal) accounts, rather by eyewitness reporters or public figures.This research has been supported in full by Russian Science Foundation (research grant 16-18-10125)
    corecore