39,997 research outputs found

    Mars polar volatiles: Topographic and geologic setting

    Get PDF
    Progress on a project to elucidate the geological and topographic setting of the Martian polar volatiles is reported. The following accomplishments are enumerated: (1) all of the Mariner 9 imaging data sets available through JPL were acquired and copied; (2) Mariner 9 imagery was investigated in terms of the accuracy of the imaging footprints, dark current, and residual image; (3) the transfer functions of both vidicons were investigated; and (4) the magnitude of the atmospheric scattering was examined

    Wits, student politics, and apartheid 1948 - 1959

    Get PDF
    Paper presented at the Wits History Workshop: Structure and Experience in the Making of Apartheid, 6-10 February, 1990

    Wits as an open university, 1922-1959

    Get PDF
    Paper presented at the Wits History Workshop: The Making of Class, 9-14 February, 198

    Hydrodynamic modelling of accretion flows

    Get PDF
    In the proceedings of this, and of several recent close binary conferences, there have been several contributions describing smoothed particle hydrodynamics simulations of accretion disks. It is apposite therefore to review the numerical scheme itself with emphasis on its advantages for disk modelling, and the methods used for modelling viscous processes.Comment: 3 pages, to appear in proceedings of IAU Colloquium 194: Compact binaries in the galaxy and beyon

    Spatio-temporal patterns in a mechanical model for mesenchymal morphogenesis

    Get PDF
    We present an in-depth study of spatio-temporal patterns in a simplified version of a mechanical model for pattern formation in mesenchymal morphogenesis. We briefly motivate the derivation of the model and show how to choose realistic boundary conditions to make the system well-posed. We firstly consider one-dimensional patterns and carry out a nonlinear perturbation analysis for the case where the uniform steady state is linearly unstable to a single mode. In two-dimensions, we show that if the displacement field in the model is represented as a sum of orthogonal parts, then the model can be decomposed into two sub-models, only one of which is capable of generating pattern. We thus focus on this particular sub-model. We present a nonlinear analysis of spatio-temporal patterns exhibited by the sub-model on a square domain and discuss mode interaction. Our analysis shows that when a two-dimensional mode number admits two or more degenerate mode pairs, the solution of the full nonlinear system of partial differential equations is a mixed mode solution in which all the degenerate mode pairs are represented in a frequency locked oscillation

    A multitemporal remote sensing approach to parsimonious streamflow modeling in a southcentral Texas watershed, USA

    No full text
    International audienceSoil moisture condition plays a vital role in a watershed's hydrologic response to a precipitation event and is thus parameterized in most, if not all, rainfall-runoff models. Yet the soil moisture condition antecedent to an event has proven difficult to quantify both spatially and temporally. This study assesses the potential to parameterize a parsimonious streamflow prediction model solely utilizing precipitation records and multi-temporal remotely sensed biophysical variables (i.e.~from Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra satellite). This study is conducted on a 1420 km2 rural watershed in the Guadalupe River basin of southcentral Texas, a basin prone to catastrophic flooding from convective precipitation events. A multiple regression model, accounting for 78% of the variance of observed streamflow for calendar year 2004, was developed based on gauged precipitation, land surface temperature, and enhanced vegetation Index (EVI), on an 8-day interval. These results compared favorably with streamflow estimations utilizing the Natural Resources Conservation Service (NRCS) curve number method and the 5-day antecedent moisture model. This approach has great potential for developing near real-time predictive models for flood forecasting and can be used as a tool for flood management in any region for which similar remotely sensed data are available

    CHANDRA observations of the NGC 1550 galaxy group -- implication for the temperature and entropy profiles of 1 keV galaxy groups

    Full text link
    We present a detailed \chandra study of the galaxy group NGC 1550. For its temperature (1.37±\pm0.01 keV) and velocity dispersion (∼\sim 300 km s−1^{-1}), the NGC 1550 group is one of the most luminous known galaxy groups (Lbol_{\rm bol} = 1.65×1043\times10^{43} erg s−1^{-1} within 200 kpc, or 0.2 \rv). We find that within ∼60\sim 60 kpc, where the gas cooling time is less than a Hubble time, the gas temperature decreases continuously toward the center, implying the existence of a cooling core. The temperature also declines beyond ∼\sim 100 kpc (or 0.1 \rv). There is a remarkable similarity of the temperature profile of NGC 1550 with those of two other 1 keV groups with accurate temperature determination. The temperature begins to decline at 0.07 - 0.1 \rv, while in hot clusters the decline begins at or beyond 0.2 \rv. Thus, there are at least some 1 keV groups that have significantly different temperature profiles from those of hot clusters, which may reflect the role of non-gravitational processes in ICM/IGM evolution. NGC 1550 has no isentropic core in its entropy profile, in contrast to the predictions of `entropy-floor' simulations. We compare the scaled entropy profiles of three 1 keV groups (including NGC 1550) and three 2 - 3 keV groups. The scaled entropy profiles of 1 keV groups show much larger scatter than those of hotter systems, which implies varied pre-heating levels. We also discuss the mass content of the NGC 1550 group and the abundance profile of heavy elements.Comment: emulateapj5.sty, 18 pages, 11 figures (including 4 color), to appear in ApJ, v598, n1, 20 Nov 200
    • …
    corecore