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FOREWORD

The purpose of this report is to describe a recently completed
program to design and manufacture an experimental transonic fan
model featuring novel methods for noise reduction at the source.

The program was conducted between 1974 - 1976 under contract

NAS3-18512 issued by NASA Lewis Research Center, with Bolt

Beranek and Newman Inc. (BBN) as the prime contractor and AVCO

Lycoming as a subcontractor. The contract resulted from a NASA

request for proposals (RFP) concerning CTOL aircraft engine fan

source reduction concepts. The intent of the RFP was to identify
advanced design concepts for reducing both rotor and stator

sources which could be implemented with existing aerodynamic

and structural design capabilities. The RFP encouraged proposals

to reduce noise from high speed single stage fans.

BBN proposed the use of "subsonic leading edge" rotor blades

and variably swept stator vanes as the concepts to be investigated.
The study and engineering work culminated in the fabrication

of a 20-inch diameter fan stage to be tested for acoustic and

aerodynamic performance at the Lewis Research Center, National
Aeronautics and Space Administration, Cleveland, Ohio.

Bolt Beranek and Newman Inc. (BBN), Cambridge, Massachusetts,

served as the prime contractor with overall program responsiblity,

as well as prime technical responsibility for the fan acoustic

design, and other areas. The Lycoming Division of AVCO Corporation,
Stratford, Connecticut, was a major subcontractor to BBN, with

responsibilities in aerodynamic and mechanical design, and manu-
facture of the fan hardware. Rotor blades and stator vanes were

manufactured under subcontract by New England Aircraft Products,
Farmington, Connecticut. "

Also included in the program were efforts to develop a 3-

dimensional compressible flow computer program to analyze the

flow through the rotor, especially in the vicinity of the leading
edge, and the investigation of the feasibility of using porous
trailing edges on the stators to reduce broadband noise. The

3-D flow program was discontinued at the time the rotor design
was finalized, and the porous edge concept was not used because

of the difficulties perceived in manufacture of small vanes from
_vailable porous metal materials.

Numerous individuals at BBN and AVCO made significant contri-

butions to this project. Mr. Richard Hayden served as project
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manager, and contributed to the acoustic design of the fan as well
as other areas. Dr. Donald Bliss served as an associate project
manager and had responsibility for the concept of the rotor blade,
the rotor acoustic design, and the coordination of the aerodynamic
design with AVCO. Mr. Bruce Murray also served as an associate
project manager and supervised the mechanical design and manu-
facturing aspects of the fan. The stator acoustic design was
carried out by Dr. K.L. Chandiramani, and Mr. Joseph Smullin.
Drs. John McElman and John O'Callahan performed finite element
stress analysis of the rotor blades, and Dr. O'Callahan contri-
buted to numerical fluid mechanical analysis of the rotor flow
field.

At AVCO Lycoming, Mr. Pierre Schwaar served as the principal
investigator and has primary program responsibility for the fan
aerothermodynamical design, and for implementing the subsonic
rotor leading edge concept and the acoustic design of the stator
blades within operational structural constraints. Mr. Herbert
Kaehler led AVCO's work on structural analysis and Mr. John Banks
supervised mechanical design and manufacturing activities there.

Mr. James G. Lucas of the NASA Lewis Research Center's V/STOL
and Noise Division was the NASA Program Manager, and contributed
valuable assistance in the mechanical design and manufacturing
areas, and in the integration of the fan into NASA's test facilities.

This report has been designated as Bolt Beranek and Newman
(BBN) Report No. 3332.
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SUMMARY

On current generation hlgh bypass ratio turbofan engines,
the fan Is a predominant noise source which must be controlled

to meet future aircraft noise goals. Of the various approaches
to turbofan engine noise reduction, the most attractive is re-

ducing the strength of the nolse-produclng elements at the

source, thus avoiding weight and performance penalties associat-

ed with various sound s_ppression approaches.

In modern hlgh bypass ratio turbofans, the fan thrust is

achieved in a single fan stage, which usually requires super-

sonic tlp speeds of the fan rotor to produce the necessary
pressure rise. In such fans, the predominant sources of noise

are shocks radiated from the supersonically-moving rotor blades
(called multiple-pure-tone [MPT] noise), and tones radiated from

the rotor wake interaction wlth stator vanes.

In this program, two advanced noise reduction concepts were

applied to the design of a 1.6 pressure ratio single stage fan.

The goal of the design was to reduce the following acoustic

sources: multiple pure tone noise, rotor-wake/stator-blade

interaction noise, and noise due to operating th_ rotor In dis-

torted or turbulent inflow. Unique nonradial blading of the
rotor and stator was used to achieve these goals. The rotor

blade leading edges were swept so that the normal component of

flow to the edge Is subsonic at all points along the blade span,
thus preventing the occurrence of leading edge shockwaves. The

stator vanes were designed to minimize noise generated by rotor

wakes incident on the blades by progresslvly sweeping the vanes

from root to tip In order to produce subsonic trace speeds for

the unsteady loads along the span. Special aerodynamic and

structural design considerations were required to assure the

performance and integrity of this unusual blade and vane design.

The rotor design using a blade concept wlth shock-free

leading edges (except at points of inflection where weak conical

shocks occur) is highly flexible in that a large family of

blade shapes and leading edge contours may, in general, be

used to achieve the noise reduction goal. The swept rotor de-

sign Is also attractive since it should perform equally well

at off-deslgn conditions if it has been designed to perform

properly at the highest envisioned rotor speed. The swept
edges also are compatible wlth reducing noise generation due
to inflow distortion.
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In the final design of the particular rotor ultimately
constructed, a reversal of the sweep direction was required
near mld-span to minimize stress levels in the blade. Once
this was done, aeroacoustical-structural design iterations led
to a blade with acceptable stress levels and no additional
compromise in acoustic performance beyond the expected weak
conical shock at the sweep reversal point.

The aerodynamics of subsonic leading edge rotor cascades
with supersonic absolute inflow velocities are not well known,
and will clearly require further study.

The concept of forcing the trace speeds of moving load
distributions on stator vanes to be subsonic was introduced for
the first time in this program. The design of a stator which
uses this concept requires a controlled rate of axial sweep-
back (or circumferential skew), the details of which depend
heavily on the rotor wake field which varies with distance
from the rotor. The selection of a stator vane number for a
given rotor design is done with the familiar cutoff condition
in mind; however, supersonic rotor tip speeds make it impossible
to completely cut off the radiation at the tips of the stator
vanes. No serious aerodynamic or structural problems were asso-
ciated with the swept stator. The stator acoustic design pro-
cedure is now well-defined in terms of flow parameters needed
as inputs, but the ability to predict the necessary flow para-
meters of the rotor wake field is presently limited.
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SECTION l

INTRODUCTION

With the advent of high byoass ratio turbofan engines,

and the associated decrease in exhaust velocity, the fan stage

has become the dominant aircraft engine noise source. Therefore,

fan noise reduction is a problem of primary importance in the

ongoing effort to evolve quieter aircraft. Furthermore, it is

increasingly important that any penalty in operating efficiency
incurred by noise reduction methods be minimized.

In general, noise reduction can be achieved in two ways:

(i) reduction through the attenuation of propagating sound

fields; and (2) reduction of the strength of the noise sources

themselves. The first approach typically involves the use of

absorptive duct liners and splitters, and possibly basic

modifications to the inlet duct geometry. Because add-on

features are required, and the duct length may be increased,

the penalties associated with this approach are added weight

and some direct reduction in aerodynamic efficiency. Further-
more, there may be a degree of noise generation associated

with some treatment modifications, such as In-duct splitters,
particularly if the inflow to the fan is disturbed.

The second approach, which is the reduction of noise at

the source, can be pursued in many ways. The basic fan design
parameters can be chosen to give more favorable acoustic

behavior. For instance, the tip speed can be reduced, the

spacing between the rotor and stator can be increased, and the

number of blades and vanes can be altered to prevent the

propagation of certain duct modes. Whether these options

can be exercised in a given case depends on the design con-
straints on the performance and size of the system.

Because, in most circumstances, acoustic considerations

cannot dictate the choice of basic fan design parameters, other
means of noise source reduction are worthy of consideration.

These other means of source reduction necessarily involve

changes in the aerodynamic design of the blades and vanes.

The design changes may occur either within the framework of

conventional design practice, such as the use of optimized
blade section properties, or may involve the exploration of

novel concepts. Although development of all the design data
needed for implementing novel concepts for noise source re-

duction may be initially difficult, the noise reduction po-

tential of a successful concept may greatly exceed the re-

duction obtained by more conventional means. Of course, the

final test of an acoustically successful concept must always



be whether any associated penalties in performance, complexity,
and system integration can be overcome or, at least, Justified
in relation to the benefits.

The subsonic leading edge rotor is implemented by tailoring
(sweeping) the rotor leading edge to the mean inflow such that
subsonic Mach number flow is achieved normal to the leading edge
along the entire span, thus preventing shock generation. Previous
use of partially-swept transonic rotors was done in an effort
to reduce transonic drag rise and thus improve stage efficiency.
Swept stators have been previously used to reduce noise, but the
design concept implemented here involves tailoring the leading
edge shape to a detailed estimate of the rotor wake field inci-
dent upon the stator.

The remainder of this report is organized to describe in
detail the rationale for selection of the particular concepts
(Sections 2 and 3), details of the design procedure used on
the swept rotor blades (Section 5) and stator vanes (Section 6),
residual noise sources (Section 7), and facility integration
(Section 8). Appendices contain a listing of aerothermodynamic
design parameters (App. A), a discussion of geometric considerations
for subsonic leading edge rotor blades (App. B), a detailed
discussion of acoustical considerations in the stator design (App.
C), discussion of empirical estimates of fan noise levels (App. D),
and a useful algorithm for estimating trace speeds of rotor wakes
on stator vane leading edges (App. E).
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SECTION 2

TRANSONICFAN NOISE SOURCES

This section summarizes the major noise sources and
mechanisms encounted with transonic fans. Typical design
characteristics of single stage transonic fans are summarized
in Table 1.

TABLE I. TYPICAL CHARACTERISTICSOF SINGLE STAGE TRANSONIC
FANS.

Pressure Ratio Range 1.4 - 1.8
Tip Speed 300 to 600 m/s (1000-2000 ft/sec)
Relative Rotor Tip Mach No. lol - 1.8
Rotor Inlet Hub/Tip Ratio .35 - .50
Stator Hub Mach No. .8

The most important noise sources, which involve both the
rotor and stator, are:

Shockwave noise from the supersonic portion of the rotor
blades, often called multiple pure tone (MPT) noise.

Rotor/stator interaction noise caused by unsteady loading
due to aerodynamic interaction (tonal and broadband noise).

Noise caused by unsteady loading on rotor blades inter-
acting with inflow distortions and turbulence (tonal and
broadband noise).

A brief elaboration on each of these sources is now provided.

2.1 Shockwave Noise

When the relative flow past the rotor becomes supersonic,
the propagation of shock waves out of the inlet duct becomes an
important noise source. The upstream propagation of waves from
blade rows with detached and attached shock wave patterns is
shown in Fig. l_(from Ref. 1). Because the pressure field must
satisfy a periodicity condition, expansion waves occur in the
regions between the shock waves.

Several investigations (Refs. 2 through 7) have shown that
nonlinear effects are an important factor in the upstream shock
propagation process. Because nonlinear attenuation occurs more
rapidly for higher initial levels, an increase or reduction of the



Expansion
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FIG. I. POSSIBLE SHOCK WAVE CONFIGURATIONS FOR

ROTORS IN SUPERSONIC FLOW.
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shock strength at the blades does not produce a comparable
increase or reduction of levels at the end of the inlet duct,
or in the far field. This effect is strongest when the wave
train in the duct is well ordered and can be considered nearly
one-dimenslonal in character. The important consequence of
this effect is that very substantial levels of source reduction
must be achieved to guarantee a worthwhile reduction in level
in the far field.

Another important consequence of nonlinear propagation is
the redistribution of the shock noise spectrum from blade
passage frequency and its harmonics to the rotor shaft rota-
tion frequency and its harmonics. This redistribution occurs
because of blade-to-blade differences in the initial strength
and position of the shock waves. These blade-to-blade differ-
ences are caused by variations in manufacturing tolerances
that may affect the circumferential location, setting angle,
thickness, and camber of the blades. Because the shock train
structure is inherently unstable to perturbations in strength
and position, these initial disturbances need not be large.
As an example, when periodic variations in shock strength
occur, the stronger shocks tend to overtake and dominate the
weaker shocks because of nonlinear effects. Because the
variations in strength are caused by blade-to-blade differences,
they are periodic in the shaft rotation speed. Thus, as the
wave train propagates, the harmonics of shaft speed become
increasingly important relative to the harmonics of blade
passage frequency. Fig. 2 shows the redistribution of energy
from blade passage frequency to shaft rotation frequency as
the result of an initial amplitude perturbation to one shock
in a wave train. Figure 3 shows sketches of typical noise
spectra for a subsonic fan, which has no shock noise, and for a
supersonic fan, where the tones at the harmonics of shaft speed
are clearly present. Clearly the multiple pure tone noise due
to shock wave propagation is a major noise problem.

2.2 Rotor/Stator Interaction Noise

Unsteady aerodynamic loads on rotor blades or stator vanes
produced by the aerodynamic interaction between the rotor and
stator are an important source of both tonal and broadband noise.
The main causes of the aerodynamic interaction are the interference
with the potential flow pressure and velocity fields and the
interaction with the viscous and turbulent wakes from upstream
blades. The potential field interaction that produces tonal noise
at the harmonics of the blade passage frequency can be virtually

5
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eliminated by providing adequate spacing between the rotor and

stator. Increasing the spacing on a high by-pass ratio fan
stage is usually practical and does not involve a severe aero-

dynamic penalty. The interaction of the stator vanes with the

"mean component"(steady velocity deficit) of the rotor wakes

produces tonal noise at the harmonics of blade passage fre-

quency, while the interaction with the wake turbulence produces
broadband noise. Increasing the spacing between the rotor and
stator also reduces - but does not necessarily eliminate - this
noise source.

2.3 Inflow Distortion Noise

The inflow to the fan rotor typically exhibits a degree
of spatial nonuniformity and a certain amount of turbulence.

Sound is produced by unsteady loads on the rotor blades

operating in this disturbed inflow. Steady spatial nonuni-
formity causes tonal noise to be produced at the harmonics of

blade passage frequency, and the presence of turbulence

produces broadband noise. However, if the turbulence scales

are sufficiently long in the streamwise direction, then many
blades will interact with a given disturbance in a similar

manner, producing peaks in the noise spectrum at the harmonics
of blade passage frequency. Because the basis for this noise

source is a random process, the amplitude of these peaks will
vary in time in a random manner. Inflow distortions have been

shown to be a potentially important noise source in static fan

test facilities. Their importance in an actual flight enviro-
nment is less certain, since the effect of forward motion is

usually to reduce certain types of inflow distortion.

8



SECTION

NOISE SOURCE REDUCTION CONCEPTS

In this section, the concepts for the reduction of rotor
and stator noise sources are described. A review of the de-

tailed analysis and design procedures associated with the im-

plementation of these concepts in the present program is post-

poned to the sections later in the report dealing with detailed
design.

3.1 Rotor Noise Reduction

As discussed in the previous section, two noise sources

associated with the rotor are multiple pure tone noise due to

shock waves and inflow distortion noise. This section describes

a concept which has the potential to substantially reduce multi-

ple pure tone noise. As an additional advantage, this concept
will also help reduce the problem of inflow distortion noise.

In principle, upstream-propagating shockwave noise can be

reduced by designing for careful alignment of the relative

velocity, w, with the suction surface near the rotor blade lead-

ing edge, as shown in Fig. 4a. However, completely shockfree
entry into the blade row cannot be achieved in conventional

blading because of the finite thickness of the blade leading

edge. The effect of thickness is illustrated in Fig. 4b. More-

over, since the relative inflow direction varies with the opera-

ting conditions, the proper alignment cannot be maintained in

off-design operation, nor in the presence of inflow distortions.

Thus, this concept presents several practical difficulties for

application to aircraft fans which do not operate at a single
design point.

A different approach to obtain shockfree entry into a

blade row is now described. It is believed that this approach

does not suffer from the shortcoming of the more conventional

approach Just described. Consider a blade whose leading edge
is swept relative to the local inflow velcocity vector. The

leading edge would in general appear swept when viewed from

the side and skewed when viewed from the front. If the leading
edge is swept such that the Mach number of the relative flow

component normal to the leading edge is everywhere subsonic,

a shockless leading edge results. In wing theory, this is
referred to as a "subsonic leading edge in supersonic flow"

(See, for instance, Ref. 8). In rotating applications, the

radial variation in relative Mach number makes it possible,

in principle, to completely avoid upstream shock wave propagation

by using leading edge and surface generating line sweep which

varies from hub to tip. In practice, structural constrains force

some design compromises. In the present design, the structural

9
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compromise entails the presence of a train of conical shocks

upstream of the rotor associated with a sweep discontinuity

in the leading edge. From the standpoint of preventing shock

noise, the design can be made insensitive to operating condi-

tions, relative flow alignment, and inlet distortions by de-

signing the sweep distribution for the highest relative inflow

Mach number to be expected; thus ensuring a lower subsonic

normal Mach number component for off-deslgn conditions. This

insensitivity is considered to be a major asset.

The underlying aerodynamic idea is now reviewed. Figure 5a

shows a swept wing of infinite extent subject to an incident

supersonic flow. Since there is no spanwise variation in the

wing geometry, the axial component has no effect. The aero-

dynamic forces are determined entirely by the component of the

flow normal to the wingspan. If the component normal to the span

is subsonic, then there are no shock waves associated with the

flow over this wing. Of course, to be completely shockless, the
normal component must be sufficiently subsonic that transonic

flow effects do not occur in the normal flow plane. The only
effect of the axial component is in the structure of the viscous

boundary layer on the wing surface, but this is not related to the

presence or absence of shock waves. The same ideas are appli-

cable, of course, to an infinite span sweptback cascade.

Fig. 5b shows a finite span wing sweptback to have subsonic

leading edges. The aerodynamic behavior is now considerably

more complicated. In particular, the presence of conical

shocks at the front and rear of the wing root and at the

rear of the tips is unavoidable. These isolated points on the

wing are discontinuities in the otherwise subsonic edges.

The conical shocks are, however, weaker than their two-

dimensional counterparts and, because of their three-dimensional

nature, decrease in strength with distance from their point

of origin.

The application of a subsonic leading edge to a fan blade

is illustrated in Fig. 5c. This illustration is simplified to

its essential form, showing only the radial change in Mach

number. The actual process is nonplanar because of the change
in direction of the inflow with radial location. The particular

case illustrated applies to a transonic fan, since part of the
incident flow is subsonic. Then the leading edge can be made

completely shockless even though the blade is of finite extent

assuming that one is able to predict and accommodate the effects

of spanwlse flows (Ref. 9 ).
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The local leading edge sweep at each radial station is chosen
to be greater than the Mach angle of the local flow, i.e.,
the swept edge must lie within the local Mach cone. This assumes
that the normal flow to the leading edge is everywhere subsonic.
Because of the gradient in Mach number, the incident flow is sub-
sonic at the base of the blade so a shock cannot emanate from
this point (unlike the wing root in Fig. 3b). Hence, the blade
leading edge can be entirely shockless, except for the effects of
aerodynamic interference between the blade tip and the shroud
which produce conical shocks. If the fan were comoletely super-
sonic, a conical shock should also occur at the root of the blade.
By designing the leading edge and the other generating lines of
the forward portion of the blade surface to be subsonic for the
situation that produces maximum relative flow Mach number, the
edge will remain subsonic under all other operating conditions.
The blade leading edge would usually be designed to have a con-
stant normal velocity (Mach number) component at all points along
the span at radii (from the hub) greater than that at which the
critical normal Mach number, Mw_i,, is reached. The critical Mach
number is that normal Mach numb_ _<I) at which thickness ef-
fects would cause the flow to become transonic.

In addition to sweepback, Figs. 6a, 6b, and 6c show swept
forward and compound sweep blades that are also possible
configurations. All of the blade configurations must have a
conical shock at the tips caused by aerodynamic interference
with the shroud. The compound sweep blade will also have a weak
conical shock at the discontinuity in sweep, which is positioned
somewhere along the leading edge (assuming the discontinuity
lies in the region of supersonic relative inflow). Although
the compound sweep blade has the acoustic penalty of introducing
a weak conical shock, it offers other definite advantages.
Structural considerations provide the most severe constraint
to the design of high speed fans with Swept blades. Fairly
large excursions of the leadin_ edge are required to imolement
this concept. It should be noted that the family of three-
dimensional curves that satisfies the subsonic leading edge
condition is not unique and therefore considerable latitude exists
to determine structurally optimum shapes. Figure 7 shows the
type of conical shock wave pattern for a compound sweep blade.
The blade in the sketch closely resembles the design developed
during the course of the project being described.

Figure 8 compares the operation ofamoderately loaded
blade row with and without subsonic leading edges in supersonic
flow. As explained above, the subsonic edge region allows
shock-free entry into the blade row. The blade rows are
identical except for the addition of a subsonic leading edge
region in one case. The front surface of the blade must be
designed so that any shocks generated on the suction surface of

13



/
!

J \

\
\

A. Swept Back

/
!

/ \
\
\

B. Swept Forward

/ / \ \
/ \\

C. Compound Sweep

FIG. 6. FRONT VIEW OF SOME POSSIBLE BLADE CONFIGURATIONS

WITH SUBSONIC LEADING EDGES.

14



ERENCE SHOCK

SHROUD

CONICAL SHOCK
SURFACES

SONIC P(

HUB--

)CK AT SWEEP
REVERSAL POINT

Mw= I

MwcRI T <I

Mw= <I

FIG. 7. CONICAL SHOCK FIELD FROM A ROTOR BLADE
WITH A COMPOUND SWEEP LEADING EDGE.

15



Moo

EXPANSION WAVE REGION )CK WAVE

(o) OPERATION OF A CONVENTIONAL MODERATELY LOADED

BLADE ROW

Moo/ I--SUBSONIC L.E.

LOCAL MACH ANGLE..-_._,, . _ _REGION

___ _-_--_._ ____ i_ __

(b) OPERATION OF A BLADE ROW WITH SWEPT ("SUBSONIC" )
LEADING EDGES

FIG. 8. COMPARISON OF THE OPERATION OF A MODERATELY LOADED
BLADE ROW WITH AND WITHOUT SUBSONIC LEADING EDGES.

16



the blade are formed sufficiently far back that the disturbance

is entirely contained in the blade row, even during off-deslgn

operation.

Using a swept leading edge also helps reduce the response
of the rotor to inflow distortions, because the magnitude of

the response is largely determined by the velocity component

normal to the leading edge (Ref. i0). The effect of inflow

distortion is most important near the tip of the rotor where

the relative velocity is highest. Fortunately, the concept

for sweeping the blades requires the most sweep near the tip.

3.2 Stator Noise Reduction by Leading Edge Sweeping and Blade/

Vane Number Selection

Although increasing the spacing between the rotor and stator

leads to some noise reduction, the aerodynamic interaction be-

tween the rotor wakes and stator vanes remains an important noise

source. Further reduction by conventional means can be achieved

by choosing the proper number of blades and vanes to cut off

many of the acoustic spinning modes in the duct (Ref.ll]. When

the rotor tip speed is subsonic, the blade and vane numbers can

be chosen so that all the spinning modes at blade passage fre-

quency, and at least some of the modes at higher harmonics, are

cut off. However, if the rotor tip speed is supersonic, at least

one spinning mode at blade passage frequency cannot be cut off,

regardless of the choice of blade and vane numbers. Since super-

sonic spinning speeds often occur on transonic fan designs, other
means of stator noise reduction are of considerable interest.

Figure 9a illustrates the interaction of a row of stator
vanes with rotor wakes when viewed on a surface of constant

radius from the fan axis. The wakes can be described as flow

regions with an average velocity W lower than the velocity of

the adjacent fluid, upon which a turbulent perturbation velocity

field Aw is superimposed.

Figure 9b shows a sketch of a three-dimensional wake/vane

interaction in a fan. The structure of the viscous, usually

turbulent, wakes that trail each rotor blade is complex. How-

ever, on the average, these wakes can be considered as being

convected with the mean flow in which they are imbedded. The
nature of the downstream mean flow is such that the convection

process will distort the wakes from their original shape; namely,

the downstream flow is distorted both axially and circumferentially

across a given radial path, leaving the downstream pattern of the

wake disturbance very much altered from the pattern at the rotor

trailing edge. Suppose, for instance, the rotor is designed to

give a mean flow that has a uniform axial velocity distribution

and a free vortex tangential velocity distribution. Assuming
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the wakes are radial at the rotor trailing edge, it is clear
that the tangential velocity component will act to skew the

wakes over, with the hub reglon leadlng the tip region. This

situation is illustrated In Flg. 9b. In this case, the inter-

action of a given wake wlth a given stator vane does not occur

simultaneously all along the stator vane span. Instead, the

instantaneous spanwise interaction region of a single rotor

wake will extend over only a portion of any one vane and will

sweep along the vane leading edge, beginning at the hub and

ending at the tip. The skewing of a wake due to convection
by the downstream mean flow can be sufficient to involve

simultaneously portions of several stator vanes.

The shape of wake and the magnitude of Its velocity components
vary from hub to tlp. To complete thls picture of the downstream

flow field, one must consider the unsteady velocity components
which account for the turbulent structure of the wakes and for

any other sources of Inhomogenleties In the flow, e.g., inlet

flow distortions, large-scale flow instabilities, and blading

errors. In general, the statistical properties of these unsteady

components can be expected to vary axially, circumferentially,
and radially.

Both the mean and unsteady velocity components of the wake

flow induce unsteady loads on the stator vanes. The mean com-

ponent will produce a load distribution that travels from hub

to tip, changing shape and amplitude in accordance wlth the

radial variation of the mean flow properties and wake strength,
width, and skew. Imposed on this traveling load distribution
will be the unsteady effect of the turbulent structure of the

wake. The end result of all sources of unsteady loading on

the stator vanes is to produce tonal and broadband noise. The

tonal noise is usually considered to be the more important
noise source. The speed at which the point of interaction of the

flow disturbance with the vane travels along the span is called

the trace speed.

A particular source of unsteady loading will produce no
significant acoustic radiation if It satisfies a subsonic and

non-accelerating trace speed criterion along the vane span. The

trace speed concept has been previously recognized for the problem

of helicopter-blade/vortex interaction by Widnall (Ref. 12) although

It has not been generally recognized In the study of fan noise.

The interaction of the wake with the vane produces a load

distribution that travels along the vane. Suppose the vane is

much longer than an acoustic wavelength. Following the trace
of a phase front of this load distribution, acoustic radiation

can occur along the vane span if the magnitude of the load changes,
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the phase speed changes with time, or if the phase speed is
supersonic. For instance, in fan noise analyses the rotor-wake/

stator-vane interaction is usually assumed to be two-dimensional

(corresponding to infinite spanwlse trace speed). The conditions

mentioned above are necessary for radiation but not sufficient.
The interaction with the acoustic field produced by the other vanes

must also be considered before the actual occurrence of acoustic

radiation can be established. Therefore, regions along the

stator vane span can be expected to be poor radiators if the

phase speeds are subsonic, nearly constant, and local levels do

not vary rapidly. Other regions may or may not be efficient
radiators depending on the behavior of the distribution of

sources elsewhere on the stator. Furthermore, end effects at
the hub and tip (within approximately one half an acoustic wave-

length of the ends) makes these regions potential radiators.

These considerations are discussed in Appendix C, and justified

in detail in Bliss, et al., (Ref. 53).

Understanding the rotor-wake/stator-vane interaction and

the criteria for radiation from the span of a single vane

suggests ways in which the vane configuration can be altered

to achieve noise reduction. The vane should be shaped so that

loads traveling along the span move at a constant subsonic

speed. Assuming that the amplitude of the load distribution,

moving with a phase front, is essentially constant, then

radiation from the vane span will not occur (except for end-

effects). The condition of a constant subsonic spanwise trace

speed can be achieved by sweeping or skewing the stator vanes,

as illustrated in Fig. i0. In this illustration, the lines of
constant phase can be considered to be the intersection of the

rotor wakes with the olane of observation (e.g., the r-e mlane

in Fig. 10a, and the r-z plane in Fig. 10b). Except for

the effect of shape changes, these lines travel at constant
speed (rotational in the r-0 plane and rectilinear in the r-z

plane) because of the rotation of the rotor. The speed at

which a phase front traces the leading edge of the stator vane

depends on the shape of the leading edge and the shape of the

phase front. Clearly the trace speed can be controlled by

either sweeping or skewing the stator vane. With this approach,

radiation from the stator span can be prevented, leaving only

acoustic radiation from end effects at the hub and tip of the

vane. Radiation from the hub region can be cut off by the

proper choice of blade and vane numbers, provided that the

rotation speed of wakes at the hub is subsonic. Since the

rotation speed of wakes at the stator tip will usually be

supersonic for a transonic fan, the radiation from tip end

effects can never be entirely cut off. Note that the rotor
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wake pattern rotates with the same angular velocity _ as the
rotor. Thus, at any given radius at any downstream location

between the rotor and stator, the rotation speed of the wake

pattern is simply, _r, which is different than the swirl velocity
component. This can be best visualized from rotor fixed co-

ordinates from which the wake pattern appears "frozen."

Another, but related, way to view the effect of sweeping
or skewing the stator vanes is as follows. Tyler and Sofrin

(1962) have shown that for a given circumferential mode

number, m, and hub-to-tlp ratio, v, the radial structure of

an acoustic spinning mode can be described by an infinite
series of characteristic functions. The functions in this

series differ according to their radial order, _, i.e., each
function has a different number of nodes in the interval

between the hub and tip. The spinning speed at which each of

these functions begins to radiate is always supersonic and

increases with increasing radial order. Therefore, at a given

supersonic spinning speed and fixed m and _, only a certain

number of the functions corresponding to the lowest radial order

will not be cut off. Vanes can be skewed or swept so that

the number of wakes on a given vane is increased, raising the
radial order of the load distribution on the vanes. The

acoustic energy is thereby redistributed to higher radial

orders, some of which will be cut off. The relationship between
duct mode cut off and the constant subsonic trace criterion

is discussed by Bliss, et al., (Ref. 13), and in Appendix C.
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SECTION 4

FAN STAGE DESIGN SUMMARY

An experimental transonic fan stage was designed and con-

structed using the noise reduction concepts explained in the two

preceding sections. The fan uses compound sweep rotor blades

designed to have "subsonic leading edges" in the region of super-

sonic relative inflow. The stator vanes were swept back to

achieve a constant subsonic trace speed of rotor wakes along the
vane span. Figures lla, b and c show photographs of the actual

fan stage. A cross-sectional view of the fan as it will appear

when installed in the test facility of NASA Lewis is shown in

Fig. 12. As indicated in the illustration, the fan will be

tested in both forward and reverse installation arrangements in
order to measure both the fore and aft noise characteristics.

The design data for the fan stage is summarized in Table 2.

In the remainder of the report, the detailed design procedures

used in the development of the fan stage are described.

TABLE 2. FAN STAGE DESIGN SUMMARY

Stage Characteristics:

Stage Pressure Ratio, P_/PI = 1.6

Mass Flow Rate, W = 31.2 kg/s (68.8 lb/sec)

Specific Mass Flow Rate:(referred to annular area at

rotor inlet)

W = 199.03kg/s.m 2 (40.761b/sec-ft 2)
as

Polytropic Stage Efficiency, n = 0.86

Rotor:

28 Compound Sweep Blades

Leading Edge Normal Mach Number = 0.91

Tip Speed = 480 m/s (1575 ft/sec)

Relative Tip Inlet Mach Number = 1._93
Rotor Inlet Tip Radius = 249 mm (9._03 in)
Rotor Inlet Hub-Tip Ratio = 0.442

Rotor Pressure Ratio, P2/PI =1.64

Stator:

59 Swept Back Vanes
Sweep Angle = 25 ° At Root, 40 ° At Tip
Stator Inlet Mach Number = 0.80

Stator Pressure Loss AP3__/P _ = .025
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(b) Front View

FIG. II concluded

(G) Side View

PHOTOGRAPHS OF THE EXPERIMENTAL FAN STAGE.
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SECTION 5

DETAILED ROTOR DESIGN

This section deals with all aspects of the detailed
analysis and design procedures associated with the fan rotor.

The aerodynamic design of a transonic rotor having blades with

"subsonic" leading edges differs significantly from conventional

design practice because the acoustic, aerodynamic, and

structural requirements interact strongly with each other from

the very beginning of the preliminary design phase. Therefore

it was necessary to conduct numerous aerodynamic-acoustic-

structural design iterations to optimize and finalize a

rotor configuration satisfying all the design requirements.

The overall design point data for the rotor are listed in

Table 2 of the previous section.

5.1 Aerodynamic Design

Certain differences are to be expected in the aerodynamic
behavior of a rotor with subsonic leading edges. Since the

entry into the blade row is shock free, any shocks that occur

must remain within the blade row under all operating conditions
because the edge region cannot support a shock system. Further-

more, the effects of sweep may introduce other three-dimensional

flow phenomena which are not present in a conventional blade

design. Given these facts, the rotor aerodynamic design was

undertaken using the best conventional design practice combined

with an anticipation of the most important effects of swept

edges. The design was carried out primarily with the use of

an axisymmetric flow computer program. Conventional (two-

dimensional) methods for analyzing the flow behavior within the

blade row are not really adequate for the three-dimensional case

of blades with swept "subsonic" edges. To handle this problem
analytically requires a more general approach. Some work was

done to adapt a new fully three-dimensional computer code to

the analysis of flow through the blades with swept edges, but

was discontinued due to schedule requirements.

An important question in the design of a rotor with "sub-

sonic" edges is related to its surge margin. Because the edge

region cannot support a shock system it was felt that the

surge margin might be reduced. Such a reduction would occur,

if the effective rotor operating range were limited by the
condition that the shock system remain within the covered

cascade region. The flow configuration in which the shock

system must remain within the covered cascade, however, does

not yield the maximum static pressure rise achievable in a

conventional transonic-supersonic rotor. Consequently, in a
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stage where surge is not triggered prematurely by the stator
flow conditions, a rotor with subsonic leading edges might
result in a decrease of the surge margin as compared to a
conventional design.

Since the rotor aerodynamic loading essentially depends
upon the rotor static pressure rise, the selection of the
meridional flow path was the main design step taken to achieve
the desired loading levels. Meridlonal channel conicity and
curvature through the rotor section were traded off in several
preliminary design attempts. The flow calculations were per-
formed by means of a code which solves the general equation
of radial equilibrium on straight axial or slanted stations
for the axisymmetric flow case taking into account the radial
variation of the blade efficiency. The polytropic efficiency
n assumed for the rotor blading is shown in Fig. 13, where n is
derived from

I

It was found that the comparatively large channel conlclty across

the rotor section required by the high design pressure ratio

P_/PI = 1.6 and the wall curvature needed at rotor exit to pre-
vent excessive channel contraction in the free space between

rotor and stator, combine to shift the maximum rotor static

pressure rise from the tip towards the midspan location, where

the shock system has the greatest tendency to move upstream

into the uncovered cascade region because of the lower relative

inlet Mach number. The main preliminary design effort con-

sequently was directed toward minimizing the static pressure

rise at the critical midspan location.

The optimum channel configuration is shown in Fig. 14.

The flow conditions are summarized on the Aero design program

(R-121) input and output printout attached in Appendix A.

Figure 15a shows the distribution of the rotor static

pressure ratio P2/PI over the channel height, together with
the relative inlet Mach number M and the corresponding nor-

^ W

mal shock pressure ratio PI/P_, which is roughly equivalent to
the static pressure ratio obtained in the front portion of a
conventional cascade with a normal shock attached to the leading

edge.
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Three types of operating conditions can be distinguished

along the rotor blade span.

(a) From the hub to the sonic radius r the rotor

1(Mw1= I)'

static pressure rise is achieved essentially by subsonic relative

flow deceleration and centrifugation.

(b) From r to r A

I(M w = 1)' 1(p2/p1=p1/pl) the rotor static
1

pressure rise must be achieved through a channel-contained normal

shock or a pseudoshock system followed by subsonic relative flow

deceleration. The radial distribution of the rotor static pres-

sure ratio P_/PI determined how far this operating condition ex-
tends beyond the sonic radius. In the present case, it extends

roughly from the 12% to the 40% mass flow streamline, or from

20% to 53% of the span, i.e., slightly beyond the point of

sweep reversal. The maximum inlet Mach number in this blade

section remains below the 1.3 level at which the interaction

of normal shock with a turbulent boundary layer produces ex-
tensive flow separation (P/P = 1.8). If minor flow separation

does occur in the upper portion of this region, the flow will

reattach to the blade because of the large solidity provided

in the vicinity of the point of sweep reversal. Consequently,
it is expected that the design flow conditions will be obtained

over this critical span section by a shock configuration located

in the forward, yet still covered portion, of the cascade.

(c) In the upper blade section, Pz/PllS smaller than PI/P1,
and the shock system consequently moves progressively toward

the rear portion of the cascade. Since no shock is attached

to the leading edge, the flow conditions are essentially similar

to those in the diverging section of a converging-diverging

nozzle in the supersonic off-design operating range.

Figure 15b schematically shows the meridional projection
of the rotor blade and the anticipated shock/pseudoshock

interception area on Its pressure and suction sides. The maln

question pertains to the rotor surge margin, l.e. the extent

to which the tlp region wlll be allowed to increase its

pressure ratio beyond the design value by forward shifting of

the shock configuration before (I) flow separation occurs at

the hub, or (il) the shock system at midspan Is forced into

the uncovered cascade region.
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5.2 Description of the Aero-Structural Design Interaction Problem

The problem of achieving acceptable stress levels is much
more difficult for a rotor with swept leading edges than for a
conventional design. The aerodynamic and structural require-
ments for the rotor blade are therefore closely coupled. Within
the aerodynamic constraints, a number of design iterations were
required to achieve acceptable stress levels and to optimize the
design. The major aerodynamic constraints are that the rotor
meet the design performance requirements and that the normal
component of flow to the leading edge be maintained at a certain
subsonic value. Because of the gradient of relative inflow Mach
number, the angle of sweep must increase toward the tip to meet
the condition of a subsonic normal component. In the present
case, the maximum normal component Mach number was chosen to be
0.91 along these leading edges (actually lower near the hub).
The value of 0.91 was chosen as a goal since it represented a
normal Mach number sufficiently below sonic to avoid thickness-
related shocks. Lower values can be chosen, but the severity of
the blade leading edge excursions increase as the normal Mach
number is lowered. For the fan design tip speed, the excursions
of the swept leading edge are large and it was necessary to use
a compound sweep configuration to minimize bending stresses. The
major variables available to control blade stresses are the loca-
tion of the sweep reversal point, the local section properties of
chord length, maximum thickness, thickness distribution, and the
stacking of the blade sections.

Because of the large leading edge excursions, the centers
of gravity of the blade sections can no longer be stacked on a
radial line. In addition to the centrifugal tensile stresses,
large bending moments about both principal axes of inertia of
the blade sections were found to occur (Fig. 16). Achievement
of acceptable stress levels required the use of a carefully
chosen sweep reversal point and the development of an effective
nonradial stacking procedure.

Typically, the most critical problem was the bending
moments about the minor axis of inertia, and a special
stacking procedure was used to minimize these moments. A
near-optlmum procedure for nonradial stacking is as follows.
The blade sections were stacked starting at the tip and moving
inward. The addition of each incremental blade section was
made so that the center of gravity of the entire portion of the
blade above this section falls on the axis of minimum inertia
of the new section. The center of gravity of the new upper
portion was then reevaluated before the next incremental section
was added in the same manner. This procedure nearly minimizes
the critical bending stresses around the axis of minimum
inertia. The result is not completely optimum because of the
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complexity of the actual situation in which the stresses are

determined by the complex interaction of many effects. Further

improvements were made by iterative changes around the result

of the above stacking procedure, particularly with the inten-

tion of relieving local stress concentrations. To theextent

that high stresses arise due to bending around the axis of

maximum inertia, these can be relieved largely by changing the

location of the sweep reversal point and varying the local
section chord and thickness.

5.3 Determination of the Subsonic Rotor Leading Edge Geometry

At each leading edge point, the relative Mach vector M
W

I

defines a Mach cone. To a prescribed value of the subsonic

velocity component M perpendicular to the leading edge,
w
IL

there corresponds a coaxial cone with smaller aperture. The

subsonic leading edge elements must only satisfy the condition

that they lie on such cones. Their direction otherwise is

arbitrary.

Referring to Fig. 17, a particular sweep direction can be

defined by specifying that each leading edge element be swept

in the plane formed by the relative inlet velocity, W, and the

radius (W-r) plane. This yields the shortest leading edge line

from hub to tip, since it maximizes the radial projection of

every leading edge segment.

Sweeping in the W-r plane however, does not result in a
blade with minimum stresses. The resulting stacking of the

CG's of the profiles in fact was shown to generate substantial

bending moments around their axis of minimum inertia. The

main parameter used to minimize bending stresses is the lateral

sweep angle, v, between the radial plane passing through the

leading edge element dl and the W-r plane. The situation is

illustrated in Fig. 17. The geometric analysis used for this

design is described in Appendix B, and only some pertinent

results are cited below. They are expressed by the two follow-

ing equations for the cylindrical coordinates eL and zL of the

leading edge points in function of the relative flow angle B ,
i

the lateral sweep angle v, the slope Sw of the relative velocity

and the projection _" of the Mach cone angle _ in the W-r plane

(see Appendix B):
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eL(r) = eL_

r

_+;rMw=l

cos(Sl +

_tan(_" ±e )
W I

• 1

pCOS9

ZL(r) = ZL + sin(81 +_)- do

i rM =i an(_" +ew )cos
W I

ew = sin- l(Vr I.I

(i)

(2)

(3)

The relation between W" and _ is given by the formula

t an _" :
-+ sin £w, cos .ew,

I
tan 2 v +A/tan 2 w(l+sln 2 tan2_)_cos2e tan_

EW I W 1W

1 + sin s ew tan 2 v
I

(L!)

In the above relations the (+) sign applies for backward,
the (-) sign for forward sweep.

The formulae define a sonic leading edge, i.e., leading

edge points lying on the Mach cones of the adjacent points.

A subsonic leading edge is simply obtained by using in the

formulae _ values corresponding to relative Mach numbers

increased by a factor f = l/M , i.e. M I = Mw where

-iL wl I/Mw_ L
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M is the subsonic Mach number of the relative velocity
W

IL

component perpendicular to the leading edge. This simple re-

lationship is illustrated in Fig. 18.

The second design parameter used to minimize the bending

stresses was the sweep reversal radius. By proper selection

of the point of sweep reversal, the center of gravity of the

blade can be located in such as way as to project radially on,

or near, the axis of maximum inertia of the hub section. From

a structural viewpoint, the compound sweep blade of Fig. 6

could be considered as a blade with hub and tip sections de-

signed and stacked according to conventional practice and fitted
with an additional front section to materialize the subsonic

leading edge configuration. The above CG stacking condition

then could be fulfilled by similarly fitting a rear section to

restore the symmetry of the mass distribution with respect to

the axis of maximum inertia of the profiles. This, however,

would maximize the additional blade mass and the elongation of

the profile chord lengths required by the compound sweep design,
which is structurally and aerodynamically undesirable. Proper

selection of the radius of sweep reversal thus is necessary to

ensure minimum blade stress and aerodynamic performance penalties.

Adjustments of the profile chord lengths can be used only to com-

pensate for a slightly off-optimum location of the sweep re-

versal point. Accordingly, the optimum stacking should yield

hub stresses exceeding those of a conventional blade only by

the contribution due to the blade mass added to incorporate

the subsonic leading edge configuration.

From the preliminary design iterations, the meridional

projection of the subsonic leading edge line and its sweep re-

versal point were known with sufficient accuracy to define the

radial distribution of the relative Mach numbers M (r) and
W

I

the relative flow angles B_ (r) and Ew (r) at the leading edge

for final design. Those data were interpolated on the stream-

lines between stations 9, 10, ll, 12 of the R-121 flow calcula-

tion. (For the axial station nomenclature, refer to Fig. 14

and Appendix A.) Table 3 presents the interpolated inlet Mach

numbers Mw , together with the selected Mach factors f and the

corresponding Mach numbers M of the relative velocity component
w
IL

perpendicular to the leading edge and M ' of the relative velocl-
W

!

ties, introduced in Eqs. l, 2 and 4.
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TABLE 3. Interpolated Aerodynamic Data for Final Subsonic
Leading Edge Design

Leading Edge

Radius (ram)

II0

116

122

129

136

143

150

160

170

180

190

200

210

220

230

240

249

Relative Mach

Nr. MWl

.829

.859

•888

.924

.959

.994

I. 028

I, 078

I. 127

1. 185

1. 242

1. 302

1.363

1. 422

1.481

1. 539

I. 588

Mach Factor

f

1. 206

I. 170

1. 140

1.118

1. 107

1. 102

I. I00

i

I. 100

!

MWl = f MWl

1.000

I. 005

1.012

1.033

1. 062

I. 095

1.131

I. 186

1,240

1. 304

1.366

1.432

1.499

1. 564

1.629

1,693

1 • 747

MWl L

.829

• 855

• 877

.894

.903

.908

• 909

I

.909
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It will be seen that forward sweep starts immediately at
' = l, i.e., by requiring that M = M =the hub by setting Mw w - w
i i L

.829 at the hub section. The selected values of M increasew
IL

gradually to .91 at approximately 1/3 of the span in accordance
with the decreasing thickness and camber of the profiles, and
then remain constant up to the tip section.

The cylindrical coordinates in the lateral sweep angle v
of the subsonic leading edge line are listed in the outlined
columns of Table 4, which reproduces the input/output data of
the computerized calculation.

5.4 Rotor Blade Profile Definition and Stacking Procedure

The optimum profile stacking configuration can be described
as follows: At every blade section along the span, the CG of
the upper blade portion projects radially on or near the axis
of minimum inertia of that section. This means that the radial
projections of the individual CG's of the upper profiles must
straddle the axis of minimum inertia of the lower section (sub-
sequently referred to as i-straddling). This is achieved by
iterative selection of the lateral sweep angle v along the span.
During that iteration, the radial location of the point of sweep
reversal initially selected is kept unchanged. When adequate
i-straddling is obtained for all blade sections, the CG straddl-
ing with respect to the axis of maximum inertia (I-straddllng)
of the hub section is checked and the radial location of the
point of sweep reversal modified accordingly.

The first preliminary design investigations were carried
out with double circular arc profiles. In the course of the
profile stacking iterations, it appeared that using airfoil
sections with CG's shifting progressively backward in the lower
span portion with forward leading edge sweep, and forward in
the upper portion with backward sweep, i.e., a blade configura-
tion with minimum chordwise excursion of the profile CG's,
could substantially contribute to minimize bending stresses.

A simple analytical blade thickness distribution was used
to simplify the design iterations involving changes in section
properties to help relieve stresses. The thickness distribution
is written in the following parametric form

t(x) - kx n (c-x) (5)
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where c is the chord length and n, a shape parameter.

a leading and trailing edge thickness,

tLE - tTE T_C

By adding

where T is the LE and TE thickness factor and _ = tmax/C the

relative blade thickness, a practical blade thickness distri-

bution is obtained. The abcissa for maximum thickness is given

by

nc

Xtma x - n+l (6)

the factor k by

k ._

(l-T)

nc 1

The complete non-dimensionalized formula is

(7)

For n = I, (X/c) t = .5. Furthermore, the second
. . .max

derivative is constant, so that the resulting profile is
essentially a double circular arc profile for small thickness.

For n • I, (x/c) • 1/2 and the profile CG shifts
tmax

toward the trailing edge. Since the first and second deriva-
tives of the thickness distribution are continuous, the profile
curvature is continuous.

Using profiles with circular mean camber lines and n varying

from 1 to 1.8 from the hub to the point of sweep reversal,

and back to 1 at the tip section, a favorable blade configuration

was obtained. However, manufacturing difficulties and the extreme

sensitivity to tolerance and foreign object damage of thin

profiles with n > 1.5 lead to the selection of n=l, i.e., essentially

double circular arc profiles for final rotor blade design.
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The blade cascade geometry was defined by means of con-

ventional procedures and criteria. Figure 19 shows representa-

tive streamline velocity triangles, together with the correspond-

ing relative flow deceleration rates W2/W I and static pressure

ratios P2/PI, the selected cascade solidities a = c/s and the

resulting D-factor values. The hub and tip cascade solidities
are equivalent to those which would have been selected for a

conventional design with identical rotor inlet and exit flow

conditions. The 30% streamline velocity triangles are represen-

tative of the conditions at the sweep reversal section (r = 170mm).

The flow deviation angles 6 at rotor exit were calculated

with Carter's empirical formula (Ref. 13)

= m /V -a (8)

with m : 0.23 + 0.05 8 2 (circular mean camber line). For

small camber angles ¢, ax Eq. (8) gives unacceptably low deviation

angles, especially in transonic cascades with shock-boundary

layer flow interaction. A minimum deviation angle of 2° was
arbitrarily assumed and the calculated 6- values were faired

gradually to the minimum value toward the tip section. The

actual profiles were defined on coaxial cylinders for the most

part of the blade. Three profiles were defined on cones in the

hub region to ensure a smooth evolution of the profile geometry
toward the conical hub section. Fig. 20 shows the relative inlet

and exit angles _ _ with the tangential direction and the
deviation angles used to define the cascade geometry.

All profiles were set at a nominal incidence i = +2 ° with respect

to the suction surface. The selected profile sections are in-

dicated on Fig. 21. Table 5 lists the profile design data de-

fining the cylindrical and conical sections unwrapped on planes

tangent to the cylinders and cones. (While all angles are con-

served in the development of cylindrical sections, the profile

camber angle is reduced in the developed conical sections by

the sector angle formed by the radii passing through the leading

and trailing edge points.)

The coordinates of the center of gravity of a cylindrical

section are determined by the following simple relations:

n

U
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FIG. 19. ROTOR VELOCITY TRIANGLES (28 blades).
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TABLE 5. Rotor Blade

28 Blades

Profile Data

(Developed Cylindrical and Conical Sections)

Section Radius

(ram)

I10/134

122/140

136/145

Mean Camber

Angle _ (o)

28.85

24.70

24.95

150

160

170

180

190

200

210

220

230

240

249

26. I0

20.90

17.00

13.70

10.90

8.70

6.90

5.60

4.70

3.90

3.30

Setting Angle

62.

56.

50.

46.

41.95

38.60

36.05

33.95

32.25

30.75

29.40

28.25

27.05

25.85

(o)

44* 64.

45* 67.

93* 74.

05 85.

95.

105.

102.

97.

92.

88.

83.

80.

77.

75.

Chord Length

c (rrLm)

55

91

73

20

20

90

30

70

90

20

80

20

20

O0

iRelative Thick-

ness _9-(%)

10.77

9.73

8.03

6.18

4.95

4.00

4. O0

*Angle between chord and tangent to the developed section circle at the trail-

ing edge
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and

ecg = eL + .5c cos T + d sin y (9)
r

Zcg ZL + .5 c sin7- d cos _ (i0)

where c is the chord length, and d is the distance of the CG to

the profile chord in the developed section.

Figure 22 shows the situation for a developed conical
section. From the aerodynamic design, the geometric charac-

teristics of the profile, especially the inlet and exit angles

B I and B 2 between the tangent to the mean camber llne at LE
g g

and TE and the circumferential direction, are ,known. Also known

are the inlet and exit radii r and r_ and the merldional pro-

Jection cm of the chord. Henc$, from2similar triangles in the

meridional plane:

cm r I

R I = r2_r I Further, R 2 = R 1 + cm

and with m = R I sin _ and 6R = R I (i - cos ¢)

c2 - (Cm+6R)2 + m2 = c2m + 2RIR 2 (i - cos¢)

In the developed section, the camber angle is

-Blg -¢ = B2g ¢

and the setting angle is defined by

(ii)

(12)

= + _R)/csin 7 (c m

Assuming a circular mean camber line in the developed

section,

B,2 = 7 + _/2

(13)

(14)
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Equations (11)-(14) determine the four quantities c, @, ¢

and y . They must be solved by successive iterations. Assuming

tentatively 4, equation (II) gives c, equation (12) gives ¢,

equation (13) gives Y , while @ is iterated until equation (14) is

satisfied.

After a profile is superimposed upon the circular mean

camber line, CG distance d is known and the coordinates of the

center of gravity are determined as follows:

2 2
_ C

_ +d
2 (symmetrical profile), e= sin-1(d/_) e = 90 + Y- _ -E

Hence, R2 = 2 _2
cg R 2 + - 2 R2_ cos a and from triangle O-LE-CG:

sin tcg =_ sin a/Rcg

r!

Finally, rcg Rl Rcg

the center of gravity are

and the cylindrical coordinates of

ecg -- eL + Rcgr _cg

cg

(15)

Zcg = ZL + (Rcg - R I) cos
(16)

All CG stacking investigations, including preliminary bending

stress evaluations, were carried out manually. However, as will

be discussed later, verification of stress levels was carried out

using computer programs at BBN and AVCO Lycoming. Figure 23

shows the final stacking of the profile CG's radially projected

on the conical hub section, which was investigated by NASTRAN

analysis. The corresponding distribution of the lateral sweep

angle _ is shown on Table 4. The NASTRAN results indicated that
the stress distribution at the hub section could be improved

by a slight tangential shift of the first two conical sections

in the rotation sense. Ae L - shifts of -.008 for the hub and
-.004 for the next section were effected without readjusting

the z - coordinates of the leading edge points. Those shifts

are indicated on Fig. 23. Provision has been made in the i -

stra_dlin_ to generate a moment that continuously compensates the

moment of the aerodynamic forces, (which are reflected in results

hereafter).
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CG's.
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The optimum radial distribution of the lateral sweep angle
is different for forward and backward leading edge sweep

directions. Consequently, a discontinuity of lateral sweep may
occur at the sections above and below the point of sweep reversal.

This, in turn, results in a high rate of curvature of the blade
surface. Since the blade is defined by discrete sections, this

appears only as a more or less pronounced concentration of the

spanwise curvature of the blade surface in the sweep reversal

region. Nevertheless, this local curvature increase generated

prohibitive stresses near the trailing edge in several preliminarily

generated configurations.

This problem was compounded by the additional bending moment

around the I-axis of the section of sweep reversal, due to the

rearward location of the CG of the upper blade portion with back-

ward leading edge sweep. The difficulty increases since the sweep
reversal was selected initially so as to minimize that moment and

it was gradually moved inward from r__ = 188 to 170 mm, still

leaving the blade CG in a forward position with respect to the
I-axls of the hub section. The stress concentration problem at

the sweep reversal section was solved by means of an elaborate

compromise of the profile stacking through that section, involv-

ing especially the selection of the critical lateral sweep angle

discontinuity. For the final configuration, with rsr = 170 mm,
this was achieved at a late design state only, the last optimiza-

tion step, which would have required the sweep reversal point to

be set at 160 mm radius, or the profile chord lengths to be in-

creased in the upper blade section. With the present stacking,

the highest stress is 645 N/mm 2 (93.5 ksi), which is adequate

for concept demonstration purposes. Figure 21 shows the developed

sweep reversal section, together with the radial projections of

the profile CG's of the upper blade portion and the leading
and trailing edge lines. The upper profile CG's have been stacked

to compensate for the aerodynamic moment and to minimize the
additional TE tensile stress resulting from the rearward CG

position of the upper blade portion.

Whereas the radial projection of the leading edge points

indicates a smooth subsonic leading edge llne, the trailing

edge llne does not appear to be as smooth as desirable. For
manufacturing the blade was defined by flat sections generated

from the blade configuration defined in the cylindrical
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coordinates used for the stacking investigations. Any minor ir-

regularities of the trailing edge were smoothed out by a slight

increasing of the chord lengths of a few local sections. All

profile data are listed in Table 5.

5.5 A Review of the Rotor Blade Design Iterations for Stress

Optimization

The main objective of the preliminary design effort (see

Fig. 24) was to define a stacking configuration that maintains

the subsonic leading edge concept, i.e., satisfies the acoustic

rotor design requirements with as low a blade stress level as

possible. A target design goal of 725 N/mm 2 (105 ksi) maximum

steady state stress was sought for the design speed of 18,450 rpm.

For the selected titanium blade, such a stress level is considered

adequate for the demonstration purposes of this program.

As a first step in each iteration, both manual and

computerized beam-type stress computations were carried out to

develop a feel for the iterative stacking procedure and to

ensure numerical agreement. The standard AVCO Lycoming blade

stress computer program which was used treats the blade as a

twisted, rotating cantilevered beam with variable section

properties, and takes into account the shroud and aerodynamic

forces and the centrifugal restoring moments. All trial blade

stacking iterations were analyzed with this program.

Simultaneously, a quick, inexpensive and efficient finite
element analysis was used at BBN to verify the results of blade

iterations. The program, based on SAP, was operated in con-
junction with a blade geometry generator which was based on the

family of blade profile shapes, described previously by Eqs. 5-7,
which reduce to a minimum the number of parameters required to

specify a blade shape; namely, the leading and trailing edge

coordinates, the section setting angle and camber, and the pro-

file shape parameters. The program was therefore very well

suited for iterative design studies. The purpose of the simul-

taneous effort was to provide further verification of the beam

and manual analysis and to help identify stress concentration,

which are neglected in the beam-type stress analysis program
and in the manual calculations. These efforts were deemed

necessary because the blade configuration differs radically

from more conventional designs, and it was uncertain whether

conventional design methods would be sufficiently accurate.
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A NASTRAN stress analysis program was used by AVCO Lycomlng

on design iterations which were considered particularly important,

and for the final stress computations verification.

The evolution of the maximum blade stress levels as the

blade design evolved through the series of trial designs is

shown in Fig. 24. The results of the first design substantiated

the impractical stress level of a blade with simple forward lead-

ing edge sweep. The initial sweep reversal radius (SR) was

selected at 195.2 mm. The stacking for trial design 2 was such

that the center of gravity of each of the 13 cylindrical blade

sections used to define the blade projected radially down onto

the axis of minimum inertia (i-axis) of the airfoil section im-

mediately below. For Iterabion 3, all section CG's were pro-

Jected onto the i-axis of the hub section. For Iteration 5, all

section CG's above the sweep reversal section were projected onto

the SR section i-axis, while the stacking of Iteration 3 was kept

for the lower blade sections. As can be seen, the resulting mis-

alignment of the upper blade portion with respect to the hub

section produced higher hub stresses. However, this design also

showed the lowest stress level for the upper blade portion.

For Iteration 6, the sweep reversal radius was lowered and

the mlsalignment was corrected by introducing a discontinuity

of the lateral sweep angle, (i.e., the angle between the sweep

direction and the radial plane containing the relative inlet

velocity), at the point of sweep reversal. By varying this

parameter, a number of stacking combinations involving individual

compromises within the upper and lower blade sections, were
investigated. Iteration 7 shows the best result obtained with

this stacking concept.

With the stress level still substantially beyond the

preliminary design goal of 105 ksi, a detailed investigation of

the stress pattern in design 7 was performed using the NASTRAN
stress program. The excellent correlation which was obtained

substantiated the beam-theory analysis method as a useful

approach to analyze blade stacking changes.

Subsequent iterations were conducted with the optimum stack-

ing concept described in Sec. 5.4. This stacking satisfies the

condition that, at every section along the span, the CG of the

entire blade portion above the section projects radially onto

the i-axis of the section. As shown by Iteration 8, this re-

duced the maximum stress level very nearly to the preliminary
design target value.
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The new stacking concept confirmed the necessity of a lateral

sweep angle discontinuity at the point of sweep reversal to

achieve proper stacking of the profile CG's across that section.

This discontinuity, however, resulted in a rapid change of the

spanwise curvature of the blade surface in the trailing edge
region, which in turn results in a local stress concentration

that was not shown by the simplified analysis. Iterations 1-8

were conducted with double circular arc profiles (DCA). Itera-

tions 9 and l0 used new profiles featuring rearward CG shifts
from the hub to the section of sweep reversal, and forward CG

shifts from that section to the tip (see previous section). In
this way, the CG excursions from a radial llne were minimized

within the leading and trailing edge envelope and the stresses

were reduced to the target level.

Figures 25 and 26 show the moments about the axes of minimum

inertia and maximum stress distributions for Design l0 as calcu-

lated by the standard blade stress program. The influence of

aerodynamic loads and centrifugal restoring moments are also

shown. (Design l0 was chosen for further study since this is

the design which first indicated stresses below the design goal.)

A detailed investigation of Design l0 was also performed

with the NASTRAN program. The results showed local high stresses
of 96 ksi at the trailing edge of the sweep reversal section and

ll0 ksi at the leading edge of the hub section. By slightly

increasing the chord length of the sweep reversal section, and

slight re-alignment of the conical hub, these stresses were

brought down to 84 and 96 ksi, respectively. The NASTRAN finite

element representation of this configuration, called Design 10A,
is shown in Fig. 27. The stress distributions of the suction

and pressure surfaces are shown in Fig. 28.

During the entire iteration process, it was apparent that

the radial location of the point of sweep reversal would have

to be moved substantially inward from its initially assumed

location in order to avoid a large moment about the I-axis

of the hub section. Moving the point of sweep reversal inboard,
however, increases the bending moment about the I-axis of the

sweep reversal section, thereby increasing the tensile stress

at the trailing edge of that section. To minimize the local

trailing edge stress concentration the radial location of the

sweep reversal section was moved inboard cautiously. Even so,

the blade CG remained ahead of the hub section I-axis, and
resulted in an addltional bending stress (on the order of 120

N/mm _) at the hub section leading edge.
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Prior to the selection and analysis of the final blade
design, several intermediate designs were investigated based
on local shifts of the CG location within the indificual air-
foil profiles. (Noted as Designs ll through 16 in Fig. 24.)
The polynomial blade sections had been evolving toward n=l or
a DCA profile. For manufacturing reasons, however, double cir-
cular arc profiles were specified for the final design. This
raised the stresses to virtually the level of iteration 9, and
additional stacking iterations were required to achieve the
design objective. In particular, the relative blade thickness
was increased from 10.00 to 10.77% at the hub section. This
resulted in a 10% decrease in the stress level. Additional
reductions were achieved through a Judicious balancing of _he
profile stacking in the lower blade portion and lateral sweep
angle discontinuity at the sweep reversal section.

A check was performed to see if the DCA profiles allowed
adequate flow area margins. On an average basis, the rotor
throat passage area has a large margin to sonic throat area
because of the comparatively high mean relative inlet Mach
number level Mwl = 1.33 and the positive inlet incidence of 2°
selected for optimum blading efficiency. The throat hub region
is most susceptible to local throat choking because of the
transonic inlet flow conditions and the higher relative blade
thickness. Because of unknown B-dimensional flow effects, it
is difficult to determine local blade stream tube areas and no
definite section throat area margins thus were specified for
the design. A check, however, was tentatively made for the
rotor hub section. On the two-dimensional basis of the developed
section of Fig. 23 the ratio of throat to inlet passage width is
1.045. At the throat location, however, the channel height has
decreased from 139 to 136.3 mm. Assuming that all individual
stream tube heights are reduced in the same proportion, the
effective geometric throat/inlet area ratio thus is Amin/Ain =
1.045 × 136.3/139 = 1.027. With a relative inlet Mach number
of .825, the sonic area ratio Ain/A s is 1.0285, thus Amin/A s =
1.027 × 1.0285 = 1.055, i.e., a 5.5% choke area margin.

In the hub region, the flow has the tendency to be deflected
inwards because of the forward leading edge sweep. On the other
hand, the increasing density toward the tip at rotor exit com-
bines with the essentially constant axial velocity of free-vortex
flow to shift the streamline pattern outwards at rotor exit.
Those compensating effects cannot be quantified at the throat
location and the comparatively large 5.5% margin thus was Judged
adequate to account for the possibility of unfavorable three-
dimensional effects and for the suction side boundary layer

I
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growth upstream of the throat in the absence of a detached lead-

ing edge shock. In summary, in spite of the selection of DCA

profiles, the individual rotor section throat margins are ade-
quate.

5.6 Final Rotor Blade Stress Analysis

The stress analysis for the final design iteration was

performed using NASTRAN. The loads considered in this run

were based on the maximum operating speed of 18,450 rpm. In

addition to the major contribution of the centrifugal load,

aerodynamic gas pressure loads, the centrifugal load and the

torsional restraints of the part span shroud were applied to
the blade. The resulting yon Mises effective stress patterns

over the pressure and suction surfaces of the blade are shown

in Figs. 29a and 29b. An independent verification of these

results was performed using the SAP program at BBN.

The maximum stress level of 645 N/mm 2 (93.5 ksi) is at the

root near the leading edge on the suction surface. The high

stress region of 90 ksi, however, extends only over a small

portion of the suction surface (Fig. 29b) and so should not pose

a problem for the planned test program. The permissible number

of start/maximum speed/stop cycles is approximately 500, con-
sidering a notch condition (SCF : 3.5) at the juncture of the
blade airfoil and the base shroud.

The tendency of the blade to untwist at the shroud location

is small since there is only i/2 degree difference in untwist

between the shrouded and unshrouded NASTRAN results. The most

significant load on the shroud, therefore, is the bending load
due to the centilevered mass. The maximum shroud stress of

78.7 ksi is at the blade-shroud Juncture, and is conservative

in that the large fairing radius at the juncture was not in-

cluded in the calculation. Because of the constraining effect

of the mld-span shroud, the untwist of the blade at the shroud

location is negligibly small. The untwist of the tip section

calculated from the NASTRAN results is .36 °, thus increasing

the tip incidence from 2 to 2.4 ° at the design speed, a value

well within the blade incidence design tolerance. However,

radial growth of the shroud has not been accounted for an_, if

such growth occurs, undesirable increased tip incidence angle

could result, due to the consequences of shroud sections "un-
locking".
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The magnitude of the stresses in the fan blade airfoil are

acceptable for an experimental program. The computed stresses

in this design exceed AVCO Lycoming practice for titanium blades

for longtime service operation, but fall within acceptable

limits for the planned experimental program.

5.7 Rotor Blade Vibration and Flutter

The avoidance of large amplitudes of resonant vibration of

the rotor blades over the full operating range is necessary to

ensure the structural integrity of the fan. The design procedure

included an assessment of the natural frequencies of the rotor

blade so that the forced vibration response is minimized, and the

self-exclted response is eliminated. The design goal for the

minimization of forced vibration is ensuring that the rotor blade
cannot resonate with the first three rotational orders of excit-

ation due to possible inlet distortions• Although higher ex-

citation orders will exist in the intake, it is considered that

these levels will be minimal in the clean inflow expected in the

acoustic test facilities and, thus, they will not generate sign-
ificant resonant stress levels in the blade. The avoidance of

self-exclted blade vibration flutter is mandatory, since the

associated stress levels usually lead to blade failure in a very

short time. The two flutter phenomena that were considered in

the design are subsonic positive stalled flutter at part-speed

operation and supersonic unstalled flutter at design speed. The
criteria for avoidance of these flutter conditions are based on

extensive experience by the engine manufacturers and are ex-

pressed in terms of a reduced velocity parameter: u/b_, where u =

air velocity over the blade (m/sec), b = blade semichord (m),

and m = frequency of vibration in the flutter mode (rads/sec).

The empirical design limit values for this parameter under positive

stalled flow are 6.7 and 2.4 for the first bending and first tor-

sion modes, respectively. The supersonic unstalled flutter de-

sign limit at first torsion frequency was:

u__ (M2_I)< i 05 , where M = Mach numberb_

The coefficients are calculated at 3/4 span• (Since supersonic

unstalled flutter usually occurs in vibration modes which are

predominantly torsional, only this mode is considered.)

65



i

A free-standing blade, assumed fixed at the base, was used

in the calculation of the resonant frequencies. The natural

frequencies for the unshrouded blade are shown in the excitation

diagram of Fig. 30. This design is clearly unsatisfactory since
the natural frequency of the first bending mode has a second

order resonance in the operating speed range. The stall flutter

coefficients are 3.44 and 1.53 for bending and torsion, respect-

ively. These values are within the safe limits which were

established as design criteria. The supersonic unstalled flutter

parameter is 1.16 and exceeds the safe upper limit.

A partspan shroud is required to raise both the first bending

and torsion natural frequencies and avoid forced and self-excited

vibrations (flutter). As a physical model, the shroud was assumed

to restrict the blade motion to a uniform translation at three re-

presentative points.

The design analysis was checked by mounting two spare blades in

a fixture which clamped at the root and partspan shroud locations.

An acoustically coupled exciter was used to vibrate the blade so

that the frequencies and mode shapes could be obtained. The com-

parison between the measured and theoretical static frequencies

shown in Fig. 31, is considered good, especially in view of the

unusual blade shape. The "measured" frequency line in Fig. 31

is actually the theoretical centrifugal stiffening line originat-

ing at the measured static frequencies of the first three modes.

Figure 31 shows the excitation diagram and calculated and

measured frequencies for the final airfoil with the partspan shroud
located at 64% of the span (201 mm radius). The first bending

natural frequency has been raised so that it clears the first three
excitation orders in the operating speed range. The fourth excit-

ation order of the first mode, (e.g., four equally spaced front

struts) however should be avoided. Based on the measured fre-

quencies, the stalled flutter coefficients are 1.5 and 1.0 for bend-

ing and torsion, respectively. The supersonic unstalled flutter
coefficient is .75. These values meet the design criteria. The

excitation diagram shows that the torsion and bending modes are

not coincident in the operating speed range. This ensures that

the modes are decoupled.

Strain gauges will be used during the test program to ensure

that safe steady and vibrating stress levels are not exceeded.

In order to locate the strain gauges appropriately, a vibratory

stress survey was conducted using strain gauges during the static

vibration tests: Fig. 32 shows the results of this test, normal-
ized for each mode. The vibratory stress distributions, shown as
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the combined steady and alternating stresses in the blade, are plot-

ted for each mode in conjunction with calculated steady stresses
at each gauge location used. Figure 33 shows the Goodman dia-

gram for the blade material and the vibrating stresses measured
in each mode proportioned for the most critical location. From

this diagram it is seen that location 'F' is the most critical
location in terms of combined stress in the first mode of vibra-

tion. Location 'C' is seen to be the most critical for the

second and third modes of vibration. It is therefore recom-

mended that strain gauges at positions 'C' and 'F' are used to

monitor the steady and vibrating stresses during the rig

running.

5.8 Attachment and Disk Analysis

The fan disk stresses were computed by a Lycomlng finite

element program which evaluates the loading variation through-

out the disk accounting for the effects of rotation, tempera-

ture gradients and elastic-plastic conditions.

Low cycle fatigue (LCF) life was evaluated for the signifi-

cant regions, i.e., the disk serrations, the bolt holes and

the disk bore, utilizing statistical minimum fatigue property

data for Timkln 17-22AS material. The stress/straln ranges
utilized in the life evaluation are the stabilized values cor-

responding to start/stop excursions to 18,450 rpm design

speed.

Stress concentration factors (SCF) were evaluated for those

areas of the disk containing a high stress gradient, i.e., the
serrations and bolt holes. This was accomplished by ratloing

the peak stresses determined by finite element analyses with

the nominal stresses in each of the two regions.

Nominal radial and tangential stress distributions for the

fan disk are shown in Fig. 34, while the nominal stresses in

the serration are shown in Fig. 35. The finite element models

for the bolt holes and serratlons are handled separately.

Stress distributions about the disk bolt-holes are given

in Fig. 36 from which an SCF of 2.06 was calculated, so that

the resulting LCF llfe is in excess of 100,000 "start/stop"

cycles based on the material S-N data of Fig. 37. It has been
concluded that the disk bore also has a calculated life of at

least 100,000 cycles.
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Blade root attachment stresses and corresponding material
properties are also summarized in Fig. 35. The bending effects
in both the root and tenon have been included. The axial width

of the base-shrouded dovetail root was determined by a permis-

sible bearing stress of 420 N/mm 2 (61.0 ksi). This is less than

the compression yield limit, yet somewhat beyond the level at

which fretting can occur under prolonged operation, but which

should be satisfactory for a limited experimental program.

From a disk serration finite element analysis, the SCF was

calculated to be 3.33 which is consistent with values measured

from photo-elastic analyses of similar blade root configura-

tions. The corresponding LCF llfe is 24,000 "start/stop" cycles

based on the appropriate curve of Fig. 37. These fatigue lives

are ample for the anticipated program of testing.
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SECTION 6

DETAILED STATOR DESIGN

This section describes the detailed design of the fan stator

which embodies the stator noise reduction concept described

earlier. The stator uses vanes with varying sweepback angle to
meet the criterion of a constant subsonic rotor wake trace speed

along the stator vane span. The use of circumferential vane

skew (lean) was avoided primarily to simplify the manufacturing
problem. The stator vane number was chosen to cut off the

radiation from residual sources due to end effects in the hub

region of the vanes at blade passage frequency. The corresponding

residual sources at the tip cannot be cut off because the spinning

speed of wake disturbance pattern is supersonic at the tip.

To determine the proper vane sweep angle distribution, the
rotor wakes were assumed to be convected with the mean flow.

The spatial location of the wake centerline surfaces could then

be computed from the mean flow properties by integration down-

stream from initial points on the rotor trailing edge. Since

the rotor wake pattern spins fixed with respect to the rotor,

it is possible to find leading edge lines whose shape is such
that their point of intersection with the rotor wake centerlines

travels at constant speed. Moving medium effects were taken

into account in the actual calculation of a vane leading edge
shape (see Appendix C for details). The trace speed was made

constant and subsonic relative to the local flow velocity vector

at all points on the vane span. The stator vane sweep distribu-

tion was designed to have an effective spanwise trace speed cor-

responding to a Mach number of 0.8 for the traveling load distri-
bution.

The fundamental acoustical analysis which underlies the

stator design concept is presented in Appendix C. In the re-

mainder of this section, the methods for determination of the

vane leading edge shape, and vane number are described, and
the aerodynamic design considerations for the stator are re-
viewed.

6.1 Acoustic Aspects of Stator Design

The major noise producing mechanism of the stator is the

interaction between the stator blades and the wakes shed by

the rotor. This interaction causes fluctuating llft at the

stator blades; the fluctuating llft in turn can be a potential

source of noise. The fluctuating lift is restricted essentially
near the stator blade leading edges (SBLE); this fact is made
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abundantly clear from the analytical work of Filotas (Ref. 10).
It is also well known (e.g., Lighthill, Ref. 15) that any fluctua-
ting llft, whether at the leading or trailing edge, whether
acoustically compact or not, whether in a stationary or moving
acoustic medium, acts as a dipole source of sound.

However, irrespective of the nature of the sources (i.e.,

whether monopole, dipole or quadrupole, etc.), there are certain

aspects of acoustics of stationary and uniformly moving media

which need to be considered before approaching the specific task
of stator design and related acoustic problems. Discussion of

these fundamental aspects is provided in Appendices C.I and C.2,

and their application to the stator design of this fan is
described below.

6.1.1 Criteria for non-radiation

Acoustic wavelengths at rotor blade passage frequency are

small compared to the stator blade span. In thls case, the

criterion for non-radiation due to unsteady forces Is that the

trace phase velocity of the force disturbance be subsonic

relative to the local gas flow. Skewing, or sweeping of the
stator blade, increasing the separation between rotor and

stator, and shaping the rotor blade are techniques which can

be used to reduce the phase trace speed.

Proper modification of leading edge profiles can reduce the
phase trace speed along the leading edge and also the relative

angle between that velocity and the local flow. Both effects

are important as It is the trace velocity relative to the local

gas-propertles flow which must be kept subsonic.

Each individual wake shed by a rotor blade suffers a lag

in the circumferential direction. The net effect of this lag on

the nature of impingement of the wake on an unswept SBLE Is

that the wake hlts the SBLE at the hub first and the impingement

process propagates radially outwards towards the SBLE tlp with

a spanwlse varying phase or trace velocity c_(r). Sweeping
back the SBLE enhances this phase lag effect_ In the sense that

the spanwise trace velocity of wake impingement is reduced. A

criterion along the lines of Eqs. (C.62) and (C.63) Is used to

78



guarantee that the wake trace Mach number m o is less than m u

everywhere along the swept back SBLE. The nature of the wake

phase lag and the calculation of the SBLE sweep angle is de-

scribed more fully below. The successful analysis of a rotor

wake tracing along the leading edge of a stator requires under-

standing of a set of transformations between stator-fixed co-

ordinates and moving medium coordinates. The derivation of the

trace velocity in stator-fixed coordinates, and subsequent

Gallilean transformations to gas-fixed coordinates is given in

Appendix E.

6.1.2 Estimate of rotor viscous wake

Estimates of the magnitude of the rotor viscous wake at the

leading edge of the stator have been made. The method of estima-

tion involved modeling the rotor blade wakes as the wakes behind

isolated airfoils. The method is somewhat crude, as it ignores

the interference between wakes and the axial pressure gradient.
The variation of angle of attack at the stator which results from

the estimated velocity fluctuations is as much as i0 degrees

from the mean. Experience with axial flow turbomachinery wakes

indicates that the estimated rotor wake amplitudes at the stator

leading edge are likely to predict higher resultant angle of
attack fluctuations than will exist in the actual rotor wake.

This is due to the higher rate of decay of rotor blade viscous

wakes in turbomachines when compared to isolated viscous wakes

in free flow (see, for example, Lakshminarayana and Raj; Ref. 16).

6.1.3 Computation of rotor wake distortion

Contours of constant phase for rotor wakes at different axial

locations were computed by use of a stepwise integration of the

phase lag of the wake relative to a point in the rotor, as a

function of radius. Cylindrical helical flow was assumed (radial

flow velocity was assumed to be zero). Axial and tangential

velocities used in this calculation were provided by AVCO's
aerodynamic design program (Appendix A). Contours of constant

phase calculated at several stations downstream of the rotor

are shown in Fig. 38 (see Fig. 14 and Appendix A for Station
Locations). Contours of constant phase versus axial location on

cylindrical surfaces, shown in Fig. 39 and contours of constant

phase in the axial/radial plane, shown in Fig. 40, were derived

by cross-plotting from Fig. 38.
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Figure 41 illustrates, in stationary coordinates, the flow

and blade motion geometry and the equations used in the calcula-

tion of the constant phase contours. The two terms @(a) and @(_)

in the calculations represent the angular translation of a fluid

particle and the angular rotation of the rotor, respectively, in
the time required for the fluid particle to flow from axial Sta-

tion I to Station 2. The trace velocity, relative to local flow,

for a number of constant-sweep-angle stators is shown in Fig. 42

The very high trace velocities near the tips result from reduced
wake "windup" in that region, thus illustrating the limited ef-

fectiveness of constant angle swept stators.

6.1.4 Mach .78 leading edge stator

A blade leading edge sweep profile for trace speeds less
than Mach 0.8 was developed for the final rotor and flow path

design using an iterative method to achieve a nearly uniform

trace velocity. The blade has a minimum sweep angle of 25 degrees

at approximately 1/3 of the span from the root. Sweep at the
root and tip are 30 and 40 degrees, respectively. Figure 43 shows

the sweep profile as well as the trace and acoustic speeds as a
function of radius.

The calculations assume a rotor blade reference axis at the

axial location 12-1/2 mm. forward of the root at Station 13. It

also assumes a stator leading edge which is radial, when project-

ed in the r, @ plane, and has its root 12.5 mm. downstream of
Station 15.

The inflow-induced radiation from an array of such variably-

swept stator vanes is now restricted to the tip regions when

discontinuities occur. The limitation of such radiation depends

upon proper choice of the number of swept leading edge stators,

which in turn depends upon the rotor blade number, rotation speed,

and moving medium acoustical considerations. The computation of
vane numbers is discussed below.
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6.2 Analysis For Determination Of Number Of Stator Blades

This section determines the appropriate minimum number
V of stator blades so that the acoustic noise radiated from

the stator at the rotor blade passage frequency f is minimized.
r

Since the swept back SBLE derived in the above section is

of finite extent, the end effects at the SBLE hub and tip from

the wake/SBLE interactions remain as potential sources of noise.

The alm here is to seek a partial circumferential cancellation

of these end sources. Thus, two discrete circumferential arrays

exist, one at the SBLE hub and the other at the SBLE tips.
Since the circumferential phase velocity c is higher at the

tip than at the hub, one concentrates on the discrete circumferen-

tial array made up of uncancelled sources at the SBLE tips.

Also, as discussed In Appendix C, the discussion of a discrete

array must be limited to only one frequency _o. Choosing
to correspond to the fundamental rotor harmonlc,(i.e., to o

the rotor blade passage frequency fr)' one obtains

= _B , (17)
0

where _ is the shaft rotation in radlan/sec (_ ~ 1940 rad/sec)

and B is the number of rotor blades (B = 28). The blade passage

frequency f is given by
r

0J
o

fr = --27~~ 8600 Hz (18)

For the circumferential phase velocity co

co = _r t , (19)
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where ra is the radius at the stator tip (rt _ 0.24m ~ 0.79 ft).

The corresponding Mach number m° is therefore given by

C
o (20)m =--= 1.27

O C

With reference to results of Appendix C.2, (Eq. C.60); m I is

the Mach number of the gas flow parallel to the array, and m
r

is the gas Mach number normal to the array. Since the array

under consideration is oriented circumferentially, the gas Mach

number m in the circumferential direction plays the role of
ml and t_e gas Mach number m in the axial direction plays the

role of mr; the radial gas aMach number, normal to the duct
walls, is to a good approximation zero. Thus, we have

m _ m ~ 0.353 (21)! C

m - m = u. Doz
r a (22)

Note that m c is directed the same way as the shaft rotation
or the phase Mach number m . Hence, first one would llke to find

from Eqs. C.62 and C.63 whet_er m o < mu - one of the two

necessary conditions for no radiation to occur. Substituting
the quoted values in Eq. C.62, one finds that

W

"< mu, for _ < e < _ ,mo ~ (23)

in other words, the condition for no radiation is satisfied for

angles a that are sufficiently remote from the axial direction.

In order to satisfy the second condition for (partial)

cancellation of radiation from the fundamental rotor harmonic,
it is required that
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2____w> 2 2w (l-ma cOsZe)I/2

dt _r (l-m2-m2cos 2a) ' (24)
c a

where dt is the circumferential spacing between two adjacent SBLE

tips. The spacin_dt, is related to the number of stator ' blades
by the relation

2_r t

dt = V (25)

The right hand side of Eq.(24) is the radiation span (k s - ka )
obtained from Eq. C.60, where 2_/I_ has been o+ o-

substituted for ko , I being the _coustlc wavelength at
frequency fr. _6 Taking sound speed c in the gas to be about
365 m/s (1200 ft/sec), the wavelength at blade passage frequency is

= 9__ . 0.14 ft = 0.043 m
r f ~

r (26)

Thus, substituting Eq. 25 in Eq. 24 , the velocity is

V >
4_r t (l-m_cos2a) IA

kr (l-m_-m_cos2a) (27)

Since the first necessary condition (Eq. 23 ) is satisfied only

for a restricted range of angles a, it would not pay to find

the maximum possible value of V for arbitrary a. Instead,

Eq. 27 is evaluated for a = _/4 (as a goes from _/2 to _/4

to 0, V evaluated from Eq. 27 increases), and the result is

V h 92 (28)

One can now examine the application of traditional analyses
(e.g., Tyler and Sofrin (Ref. ll)) of noise generated by rotor-

stator interaction, the anlysis that is used primarily for low-
speed compressors (i.e., analysis is based on stationary medium

acoustics) that involve subsonic circumferential phase speeds

(i.e., _r t < c) and are acoustically compact (i.e., d t < _ /2).r
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An arbitrary component (say, the predominant component

of wake velocity deficit pattern that generates fluctuating lift

at SBLE) a(x,r,e,t) of rotor-generated flow field near the stator

may be decomposed into circumferential harmonics as follows

+_ I[ nB( e -_t )]

a(x,r,e,t) = _ An(x,r) e
n=-_ (29)

where x and r are the axial and radial locations (and for our

case of interest denote the locations of SBLE tips) and 8 Is the

circumferential angle.

The noise sources (in particular, the fluctuating llft £
generated at SBLE tips) at the stator due to the nth rotor

harmonic may then be viewed as composed of a sum of stator/rotor

harmonics mn. A typical interaction harmonic Lmn(S,r,e,t) may
be written as

i(mS-nB_t)

Lmn(X,r,e,t) = Lmn(X,r) e , (30)

where

m = nB + kV , (31)

and where k can assume arbitrary integral values (positive,
negative or zero).

The circumferential phase velocity c (r)mn associated
with Eqs. 30 and 31 can be written as o

Co(r)m n = nB_rnB+kV ' (32)
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Similarly, from Eq. 19, the circumferential phase velocity for
all the rotor harmonics n is mr and assumes the value 2rt at
the SBLE tips. This same value Is recovered for the

interaction modes from Eq. 32, for the stator fundamental

mode, i.e., for the case k = 0.

Figure 44 depicts the situation in terms of these rotor-

stator interaction harmonics. The harmonics lie at the inter-

sections of vertical lines passing through the nB axis for

n = 0, 51, 52 ... and horizontal lines passing through the m
axis for k = 0, 51, 52 ... The rotor fundamental tone

occurring at the blade passage frequency fr (see Eqs. 17 and
18 ) corresponds to vertical straight lines passing through
n = 51 (i.e., nB= 528). Similarly, nth rotor harmonic corres-

ponds to frequency nf r. The fact that attention was turned

to the stator fundamental harmonic at frequency fr (see Eqs. 19
and 20 ) means that the k = 0 stator mode was examined at

fr" From Eq. 23 , one finds that this stator fundamental harmonic

barely escapes radiation. From Eq. 32 , it can be seen that the
same situation applies to stator fundamental harmonics (i.e., k = 0

modes) for all rotor harmonics (i.e., arbitrary n). Thus, the

straight llne in Flg. 44 passing through these k = 0 modes

separates the radiating and non-radlatlng harmonics.

The criterion of Eq. (24) was applied to prevent the next

candidate stator harmonics (k = 51 modes for n = 51) from

radiating at the blade passage frequency f (only). The

straight line Joining these k = -i, +I modSs thus also separates
the radiating and non-radlatlng harmonics. The flow-lnduced

assymmetry in radiation span along wavenumber is reflected in

Fig. 44 by assymmetry of radiating and non-radlating harmonics

around m and nB axes. Incidentally, stator harmonics lying
In the upper right and lower left quadrants of the m, nB
plane possess circumferential velocities that are oriented in

the same direction as shaft rotation _, and the harmonics lying

In the upper left and lower right quadrants possess velocities
that are oriented in the direction opposed to _.

Finally, note that the relatively high number V of

stator blades indicated by Eq. 28 may cause design problems

of aerodynamic nature. For example, relatively hlgh solldity

st the hub, particularly for the scale model fan, is unacep-
ceptable. Therefore, a compromise number of 59 was selected

for V. Such a choice ensures circumferential cancellation at _

the SBLE hub, but not at the tlp. In other words, with reference

to Fig. 44, k = 51modes would radiate from the SBLE tips.
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6.3 Stator Aerodynamic Design Considerations

The stator is characterized by a backward leading edge sweep

varying from 25 to 40 ° in the meridional plane. The axial spac-

ing between rotor trailing edge (TE) and stator leading edge (LE)

varies approximately from two to three rotor hub chords along the

span.

A minimum number of 59 blades was specified by acoustic

considerations. This, in conjunction with a tentatively selected

hub cascade solidity _hub = 2, resulted in a chord length of
approximately 30mm.

The meridional contour of the stator was shown in Fig. 14.

Radial station 17 crosses the leading edge, 19 the trailing edge,

and 18 crosses both the leading and trailing edges. Radial

equilibrium along those stations is markedly influenced by the

varying degree of stator turning, resulting in peculiar tangen-

tial velocity distributions that have been input in R-121, to-

gether with the corresponding total pressure loss distributions.
The flow conditions from rotor exit station 13 to stator inlet

stations 16, 17, 18, and 19, have been calculated according to

constant rotor exit momentum V .r specified along the stream-
lines, u

The meridional flow pattern (Fig. 14) shows the radial

streamline shifts induced by the swept back stator configuration,

especially in the hub region, where Vu.r is large and has a strong

effect on radial equilibrium. In the axisymmetric flow case, the

streamlines approaching the leading edge are deflected inboard.

Looking at the lower portion of station 17, the flow at the hub
section has already undergone the major part of its turning, and

V .r thus increases markedly from the hub to the 30% streamline
u

on that station. This substantial departure from free-vortex

flows generates an increase of the axial velocity component to-

ward the hub and a corresponding increase of the mass flow den-

sity PVx, in turn resulting in inboard streamline shifts between

leading edge and station 17. This characteristic pattern is

found along the entire span, but disappears gradually toward the

tip section because of the decreasing value of the V_/r-term.

The merldional streamline curvature term V_/R c has a strong

effect in this flow field region. The determination of R c how-

ever is very approxlmative even with the spline-on spline procedure
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i

used in R-121, so that the interpolated values of the flow condi-

tions at the stator leading edge cannot be expected to be smooth.

Fig. 45 shows the radial distribution of the inlet angles a 3

determined by Vx-interpolation and constant Vu.r along the stream-

lines, and the smooth distribution assumed for bladlng design.

The maximum smoothing error does not exceed 1-1.5 °, which is well

within the accuracy that can be expected from the axisymmetric

analysis.

Figure 45 also shows the stator exit flow deviation angles
calculated with Carter's formula [Equation (8), circular mean

camber lines]. The blade sections are stacked with the leading

edge in a meridional plane. All profiles were set at 0° nominal

incidence. Table 6 lists the profile data defining plane sec-

tions perpendicular to the radius in the leading edge plane.
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SECTION 7

COMMENTS ON RESIDUAL NOISE SOURCES AND NOISE LEVELS OF THE

SWEPT ROTOR AND STATOR FAN STAGE

The object of the Low Source Noise Fan Program is to

design fan components for minimal noise generation. This
has been done by first using physical models for each of the

component noise mechanisms, and calculating the appropriate

parameters from the particular baseline fan design, then

modifying the component geometry to minimize noise generation.

All sources of noise cannot be eliminated, and indeed all sources

have not been attacked in this study.

7.1 Residual Sources for a Fan outside the Laboratory Environment.

As has been previously discussed in detail, the compound
sweep required on the rotor blades for structural reasons will

lead to a conical shock at the sweep reversal point. However, in

some future fan designs, the location of the sweep reversal point
at a radius less than that at which the critical relative Mach
number occurs will eliminate the source of noise. Rotor

discrete frequency mechanisms which cannot be eliminated include

the so-called Gutin noise sources associated with steady loads

and thickness noise. However, the non-radial blading may cause
these mechanisms to excite high order duct modes and thus re-

duce the radiation to the far field. Rotor broadband mech-

anisms are relatively poorly understood quantitatively (in the
absence of inflow turbulence), and thus are difficult to attack at

the source. Shock/turbulence interaction in the channel may cause
some forward radiated noise, and quite likely causes aft-radiated
broadband noise.

Stator noise mechanisms are much better understood and can

be attacked with much more confidence than some rotor mechanisms.

The uncancelled tip radiation (calculated in Appendix C) is the

only discrete-frequency mechanism inherently associated with

the subsonic trace speed swept stator concept, assuming that
the rotor wake field can be accurately specified. Stator

broadband mechanisms not attacked by the swept leading edge in-

clude vortex shedding and flow separation at the trailing edge.
Other broadband noise from an installed fan comes from the

exhaust jet and duct boundary layer turbulence interaction with

the lip of the fan duct.
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7.2 Prediction of Noise Levels and Noise Reduction of the
Swept Rotor and Stator Fan.

Despite intensive research efforts in the past twenty years
which have led to a good understanding of noise mechanisms and
scaling laws, the ability to p_ed_ct fan noise for an arbitrary
design on a component-by-component basis is quite limited. For
conventional fans, useful semi-empirical correlations of data
have been made aslng scaling laws which are based on assumed
mechanisms. Thus, for conventional fans, one can predict
within a few dB the expected sound power and directivity.
However, the applicability of those correlations to a fan of
unconventional component design is doubtful.

For the subject fan design, the prediction of residual
noise from the rotor requires the knowledge of the strength
of the conical shock upstream of the rotor, which is not
presently known due to the cessation of activity on the 3-D
compressible flow program. The stator discrete noise has been
calculated directly for basic principles and is presented in
Appendix C.

However, the main noise source of interest, rotor multiple
pure tones cannot be reliably estimated without detailed infor-
mation on shock structure and duct propagation characteristics.
In the interest of providing an estimate of the benefits of
eliminating MPT noise, a computer program published by Burdsall
et al., (Ref. 20) was exercised (see Appendix D for details).

The results summarized below for a full scale (a 40,000 ib

thrust) counterpart of the 20 inch fan built in this program,

show that elimination of the shock-generated MPT's reduces the

overall and perceived noise levels by 4-6 dB, and reduces the

tonal content in the 1/3 octave band containing the blade passage
frequency by about i0 dB.
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TABLE 7. ORDER-OF-MAGNITUDE EMPIRICAL ESTIMATE OF NOISE LEVELS
FROM FULL SCALE SINGLE STAGE FAN.

Spectrum
Component

M.P.T.(conven-
tional blades)

Overall
PWL (dB re 10 -12w)

152-154

OASPL*(@150')

dB(re 2xlO'SN/m a)

104-106

PNL*(@I50")

i17-119

B.P. Tone

Broadband Mech-

anisms

TOTAL

with MPT's

without MPT's

143

150

95

lO3

153.5-155.2

150

105.3-107.2

103

108

114

118-120

ll4

*Valid in the forward-radiated direction at azimuths from

40-80 ° from fan axis (± 3 dB); to scale to greater distances,

subtract 20 log r/15b, where r is distance in feet.
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SECTION 8

MECHANICAL DESIGN ASPECTS AND FACILITY INTEGRATION

The fan rig is built to conventional standards and is de-

signed to interface with the NASA W-2 and W-8 test facilities.

The W-2, acoustic facility is arranged for the messurement of

forward and rearward radiated noise; thus, the rig casings
have flanges at both ends which mate with the faciIity mounting

flanges. The manner in which this is accomplished is shown

schematically in Fig. 12. In the reverse flow mode, for back-

ward radiated nois% an additional flow path adaptor supplied by

NASA and not shown in Fig. 12 is fitted to the fan outlet flanges.

In the W-8 facility the fan is mounted on its rear flange with

the flow entering from the bellmouth. All detailed performance

measurements of the fan will be made in the W-8 facility.

A flow path adaptor fits over the facility bearing housing

to control the fan outlet flow and into this adaptor is fastened

the inner shroud of the stator vane assembly. The outer shroud

of the stator vane assembly is located in the fan casing and pro-

vision is made for axial adjustment of the stator by relocating

the spacers at the inner and outer shrouds. The fan outer casing

is split in the vertical plane for assembly purposes. The section

of the outer casing in the area of the blade tips is relieved and

an abradable shroud lining is installed to prevent blade tip
damage in case of tip rubs. Figure 46 shows the engineering

cross-section of the fan which details all the major components.
Strain gauges will be applied to the rotor blades, the wires
being led down the front and rear faces of the disc. In the

W-2 facility the slipring is installed at the driven end of the

rig shaft and, thus, the strain gauge wiring will pass down the
length of the hollow shaft. When the fan is running in the W-8

aerodynamic facility, the strain gauge wiring will be led forward

through the driveshaft adaptor which is fitted in place of the
spinner support cone. A static fairing is installed over the

slipring to provide a smooth flow profile into the fan, in place
of the spinner.
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SECTION 9

CONCLUDING REMARKS

A research program was undertaken to try to demonstrate that

source noise reduction concepts which are based upon full and

rigorous application of fundamental aeroacoustic principles

can be implemented on turbofans in the currently-operating range

of tip speeds and pressure ratios, utilizing the existing design

and manufacturing capabilities of the aircraft engine industry,

without serious compromise of the noise reduction concept.

The subsonic leading edge rotor blade concept has significant
potential as a practical solution to rotor-generated noise due

to its inherent lack of sensitivity to off-deslgn-point operating

conditions, and the large family of detailed edge and generating

surface contours available for fans in various speed ranges. The

aerodynamic behavior of subsonic leading edge rotors in supersonic

absolute inflow velocities is largely unknown at this point in
time. However, it is believed that the characterizations of such

flow fields, to the extent necessary in developing actual engines

using the subsonic leading edge rotor principle, would at this

time require considerably less effort than has been expended
historically in understanding aerodynamic behavior of conventional
rotors.

The subsonic trace speed stator vane concept can be imple-

mented through application of moving medium acoustic principles
and a knowledge of the details of the rotor wake field, the lack

of the latter being a current limitation. However, the subsonic

trace speed concept can, in principle, be successfully implemented
by use of conservative assumptions about the rotor wake field.
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APPENDIX A

COMPUTER LISTING OF AEROTHERMODYNAMIC PARAMETERS

FOR FINAL ROTOR, STATOR & FLOW PATH DESIGN

A-l



APPENDIX A: DETAILED AEROTHERMODYNAMICDATA

This appendix contains a computer listing of the aerothermo-
dynamic data for the final design of the fan.

The first four pages, A-6 to A-9 are input data to AVCO
Lycoming Program R121 at various axial stations. All units
in the SI system and headings on the columns are self-explanatory.
The three parameters in the left hand column are:

TOT PRESS = Total Pressure Ratio

TOT TEMP = Total Temperature Ratio

VU = Absolute Tangential Velocity Component of
the Air (m/sec)

The remaining pages are detailed output at the various
axial stations, the non-obvious terms of which are defined
below.
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Coded Term

A STATIC

A TOTAL

ALPHA BAR

ALPHA

BETA

V

VM

VR

S-VALUE

% SPAN

VX

VU

W

WU

MV

MVX

MVM

Meaning

ambient sound speed

sound speed based on total temperature

sin -I (Vm/V)= angle of flow made

by V in tangential direction measured
on a cone

sin -I (Vx/V) = angle made by projec-

tion of absolute velocity vector

(on a cylinder)

angle that the relative velocity

vector makes with a cylinder

absolute velocity m/s

meridional component of V m/s

radial component of V m/s

radial length measured along a m
station cut (origin at hub)

percent radial distance compared to

full span measured from hub

axial component of absolute velocity m/s

tangential component of absolute m/s

velocity

relative velocity m/s

tangential component of relative m/s

velocity

Mach number of absolute velocity V ---

Mach number of VX ---

Mach number of VM

Units

m/sec

degrees

degrees

degrees
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Coded Term

R-ADC

RHO

ROTOR EFF

S-VALUE

STAT PRESS

STAT TEMP

TO/TO }(TO/TO)T

TOT PRESS

TOT TEMP

U

V

VM

VR

VU

VX

W

WU

X-VALUE

Meaning

streamline radius of curvature in
meridional plane

fluid density

polytropic rotor efficiency

radial length measured along a

station cut (origin at hub)

static pressure

static temperature

Similar definitions for the stagnation
temperatures.

total pressure ratio

total temperature

rotational speed

absolute velocity

meridional component of V

radial component of V

tangential component of absolute

velocity

axial component of absolute velocity

relative velocity

tangential component of relative

velocity

axial location of station re:orlgln
(station 4)

Units

m

Kg/m 3

m

bars

o Kelvin

o Kelvin

m/s

m/s

m/s

m/s

m/s

m/s

m/s

m/s

m
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Coded Term Meaning Units

% AREA % of annulus area .taken up by a stream

tube from the preceding area to that

where % AREA is indicated
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APPENDIX B: GEOMETRIC CONSIDERATIONS FOR SUBSONIC LEADING

EDGES ON TRANSONIC ROTOR BLADES

We first note that a simple leading edge configuration is

obtained by sweeping each leading edge element dl in the plane

formed by the local relative velocity W I and the radius (W -r plane).

This plane intersects the Mach cone along two generatrices that

form the Mach cone angle _ with W. Any other plane through the apex

cuts the cone along generatrlces forming a smaller angle W" with

W in the W-r projection. Since the radial projection of dl is

essentially proportional to sin _", it follows that the simple

case defined above yields the shortest possible swept blade

length for a given annulus height and a given relative velocity

distribution W(r). For structural reasons, however, the leading

edge must be swept aside from the W -r plane.

The general situation is shown in Fig. B.1 (Refer also to

Fig. 17).

la shows the projection on a plane perpendicular to the radius

passing through leading edge point P. The velocity triangle

is projected in that plane for visualization convenience.

ib shows the projection on the W-r plane, with the Mach lines

forming the Mach angle _ with W. In general, W forms an angle ew

with plane la.

ic shows the projection on a plane perpendicular to W, intersecting

the Mach cone along circle c.

Id shows the projection on a meridional plane.
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FIG B-I
SONIC SWEPT LEADING EDGE ELEMENT
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On la, the leading edge element dl has the projection dl' and

the radial planes passing through dl and W form the angle _, which

is a design parameter to be selected so as to minimize the blade

bending stresses. The resulting lateral sweep component dn

appears also on projection lc and causes the Mach angle

between dl and W to project into the W-r plane lb with a smaller

aperture _".

From la

dx t = ±dl' cos (8 +_)

dz = ±dl' sin (8 +_)

In the above and the following relations, the top signs denote

backwards, the bottom signs forward sweep.

Since

am
dl' = =

COS

dp
tan(_" ±c w)" cos

1

COS +

......
J" tan (_"±E w )

1

1
dp

COS _)

(B.I)

From lb and lc

tan I_" =
ds cos

.dl
= tan _ " cos (B.2)

]
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and since

sin m = d_n_n = d__nn d__m_m dl" cos

ds dm dl" ds cos

= tan _ • cos (W"± Ew _. cos msin_"
1

Therefore,

1
costa = , (B. 3 )

_i tan2_+ cos 2 (_" ±¢w )
sin2_ ,,

which is introduced in Eqn. B.2, yielding

tan2p ,, =
t an 2

i + tan2v cos 2 ( )
sin2_ ''

(B.4)

Developing cos ( _" ±E w), Eqn. 54 is reduced to a quadratic

equation for tan P". The solution is

tan _,, _-

-+sin ew cos Ewtan29 +_tan2p (l+sin2_an2_)-cos

i + sin2 Ewta n2

2 _:_an.2 ,

(B.5)
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(Only the (+) sign is valid in front of the radical, since

tan p" must tend toward tan _ when _ tends toward 0).

\

We define the blade profiles and their stacking in cylin-

drical coordinates. The angular abcissa of leading edge point

P(r) then is

cos (B

eL(r) _@L = eL _tan(P" ±e w)
I 1 I

9M=l rM_l

I dp
_(B.6)

cos _ P

r

if sin (B

P + ._

ZL (r) = ZL _"
n ( ±e w)

1

+
dp

rM=l

cos (B.7)

where Vr (B.8)
= arc sin m

EW W :
I 1

Eqs. (B.6) and (B.7), together with (B.5) and (B.6), determine the

cylindrical coordinates of the profile leading edges, for a blade

with sonic leading edge.

Wlth the section profile data, the stacking of the centers of

gravity is determined, and the blade bending stresses can be

calculated. However, it is advisable to iterate the leading

edge coordinates until a favorable alignment of the CG's is

achieved, prior to the calculation of stresses.
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By optimum selection of the lateral sweep and of the

radial location of the point of sweep reversal, it is expected

that the additional stresses affecting the subsonic leading

edge blade will be reduced to:

(a) Additional centrifugal stresses from the added

blade mass necessary to materialize the subsonic

leading edge configuration.

(b) Bending stresses from moments without substantial

component in the direction of the axes of minimum

inertia.

l

r
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APPENDIX C

FUNDAMENTAL ACOUSTICAL ASPECTS OF STATOR DESIGN

C.I Continuous and Discrete Line Sources in a Stationary
Acoustic Medium

Continuous Line Source

Consider a line monopole source of the type

i(koX-mot)

q(x,t) = Qo e

where Qo is the source strength per unit length. The line
source of Eq. C.1 represents one wave traveling along the

x-axis (see Fig. C_l) wlth a velocity co given by

(C.l)

co = mo/ko (C.2)

One is interested (only) in the far field pressure p(x,y,z,t)

radiated by the llne source. Define

r = ½ (0.3)

Consider the case (referred to as Case No. l) where the source

velocity c o is supersonic, i.e.,

ECol > c , (0.4)

or equivalently,

Ikol < kao = Imol/C • (C.5)

Here c Is the sound speed for the medium and ka is the acoustic
wavenumber at frequency mo" For this case, the°far field pres-

sure p(x,r,t) is non-zero; In other words the line source can

radiate acoustic power. More specifically,
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p(x•r•t) = constant ×
1

(krr)½

i(koX+krr-_ot)

e (c.6)

where the radial wavenumber kr Is given by

kr = (k_ - ko2)½
O

(c.7)

2 < k 2 (see Eq. C.5)• k r Is real and the sound Is
Since k ° a° propagated radially outwards from the x-axls.

Now consider the alternate case (Case No. 2) where the

source velocity co is subsonic• i.e.•

]Col < c • (C.8)

or equivalently•

Ikol > k a • (C.9)
O

For thls case, the far field pressure p(x,r,t) is zero; In other

words the llne source cannot deliver any acoustic power. More
specifically•

p(x,r•t•) = 0 (C.lO)

Thls happens because the radial wavenumber kr is imaginary•

kr = +I (k_ - k 2 )½ (C ll)a •
o

and the near field pressure decays exponentially in the radial
direction.

Let us reconsider the above results In terms of the spatial

Fourier transform _(kz,t ) of Eq. (C.1). First, define the
general Fourier transforms.
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_ 1 [ -ik x
q(k I _t)

2_ ] q(x,t) e i dx (C.12)

I ik xq(x,t) = _(k,,t) e * dk (C.13)
I

Unless stated otherwise, the limits of integration are always

to be taken from -_ to +_. For later use, the temporal Fourier

transforms shall also be needed, defined as follows.

i i_t_(kl '_) - 271 _(kl,t) e dt (C.14)

I I -i(k x-_t)1 q(x,t) e i dxdt (C.15)
(2_) 2

i [ i(k x-_t)q(x,t) = _(k I,_) e * dk,d_ (C.16)

i i_t= q(x,_) e d_ (0.17)

Substituting q(x,t) of Eq. (C.1) into Eq. (C.12),

-i_ t

_(k,,t) = Qo e o _(k,_ko), (C.18)

where _ is the Dirac delta function. Figure C.2 illustrates

_(k,,t) for Case No. 1 (radiation) and for Case No. 2 (no

radiation). The "radiation span" along the wavenumber k I is

centered around the wavenumber kl = 0 and ranges from -kao to
+kao. This radiation span is shown in Fig. C.2 as a

shaded strip.

Let us reformulate the condition of no radiation in terms

of velocities and Mach numbers. The two extremes -k a and +kao
of the radiation span correspond respectively to the o

lowest and the highest velocities that the source wave can have
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l CASE I CASE 2

-kOo'"'""....._0"_o0 _ "'
L J

NO RADIATION--_ RADIATION -_NO RADIATION

FIG. C. 2. CASES OF RADIATION (No. I) AND NO RADIATION (No. 2)

ILLUSTRATED IN TERMS OF THE WAVENUMBER k
1"
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for no radiation to occur (Case 2).

and Mach numbers are,

_0
O

c_ - _k a -c
o

c_
m^ = -- - -1

x, C

O
C - - +C

u +kao

C
U

m ----= +I
U C

These extreme velocities

(C.19)

(0.20)

The source wave Mach number mo is defined as:

C
O

m --

O C
(c.21)

Thus, the condition of no radiation (Case 2) becomes

m_ < m ° < m u (C.22)

Next, consider a spatially frozen but otherwise arbitrary

pattern q(x,t) traveling, as before, with fixed velocity co in
the x-direction. Thus,

q(x,t) = Q(X-Cot) . (C.23)

In contrast to Eq. (C.1), for which there was one wavenumber ko,

one frequency mo, and one velocity Co, for Eq. (C.23) there is

a range of wavenumbers kz, a corresponding range of frequencies

m, and one velocity Co. Using Eq. (C.15), the Fourier transform
of q(x,t) of Eq. (C.2B) is
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[ -i(k x-_t)_(k1,_ ) _ I Q(x-c t) e I dxdt (C 24)
(2 )2 o

i -ik c t+i_t1 e o
= 2--_ dt (0.25)

-- 6( -k c ) (c 26)
I O _

where

Q(k) = 1 I -ik x2--_ Q(x) e l dx (0.27)

Figure 0.3 shows the straight lines along which _(k,,m) of
Eq. (C.26) is non-zero. Analogous to Fig. C.2, straight lines
corresponding to Case 1 (radiation) and Case 2 (no radiation)

are illustrated. Notice that as frequency e increases, the

radiation span 2k a over wavenumber k, also increases llnearly_

But, as long as the source velocity magnitude Icnl is subsonic,
there is no radiation to the far field. Inciden_ially, the

upper right and the lower left quadrants of _-k I plane correspond
to positive phase velocities, (i.e., velocities along increasing

x), whereas the upper left and the lower right quadrants of _-kl
plane correspond to negative phase velocities.

This completes the discussion of a continuous frozen pattern
of llne sources in a stationary acoustic medium. Consideration

of the fact that the acoustic medium is moving uniformly, will

simply alter the radiation span along k_, as will be discussed

in Sec. C.2. However, a frozen convecting pattern along x_,
will or will not radiate, by exactly analogous rules as developed

here, i.e., in terms of the convection or phase velocity co of
the pattern.

Finally, note that for a continuous convecting line source

of finite length, even if the convection velocity co is subsonic,
there will be inevitable radiation from the two ends of the line

source. For low enough frequencies, the two ends may be less

than half an acoustic wavelength apart, in which case there may
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NO RADIATION

,RADI ATION

CASEI,k,=-_o ; ICol>C

NO RADIATION

CASE 2

k,=_ ICol<C
Co

FIG. C.3. CASES OF RADIATION AND NO RADIATION FOR A SPATIALLY

FROZEN ARBITRARY PATTERN, ILLUSTRATED IN THE k ,¢

PLANE.
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be partial cancellation from the two end sources. For higher

frequencies, the two end sources will radiate independently.

This last remark is discussed more fully below when discrete line

sources are considered in a stationary acoustic medium. However,

the SBLE is regarded as a continuous llne array, and a typical

rotor wake impinging on It has a local convection velocity co
along the span of the SBLE. Thus the preceding discussion of
continuous line sources, or rather its related extension In Sec.

C.2, where account is taken also of the moving-medlum acoustics,

is applied to determine the SBLE sweep; the criterion that Is

applied is in terms of the spanwise local velocity of the rotor

wake along the SBLE.

Discrete Line Source

Now consider an array of equlspaced coherent monopoles,

spaced d apart (see Fig. C.4), where:

xj = dj , J = 0, ±l, ±2 ...

In analogy wlth Eq. (C.1), consider one wavenumber ko,

one frequency mo and the corresponding phase velocity c o .

Thus, the source number j has the strength q(xj,t) given by

(C.28)

i(koX.-_ t)

q(xj,t) = Qo e j o 6(x-dj)

The entire source strength can be written as

(C.29)

+_ I (koX-_ t)
q(x,t) = Qo _ e o 6(x-dJ) , (C.30)

_D_

and the phase velocity Co, as before, is given by

co = mo/ko . (C.31)

Eq. (C.12) Is used to flnd the spatial Fourier transform of

q(x,t) of Eq. (C.30),
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FIG. C.4. SKETCH OF AN ARRAY OF POINT SOURCES.
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_(k ,t) -
I

_oo

Qo2w I -ik x i(koX-mot)je i e _=__ (x-dj) dx

(C.32)

Qo -i_ t -i(k -k )dJ
= _-_ e o _ e i o (C.33)

_

Qo -i_ot +_ 2_m
= -_- e _ 6(ko-kl d ) (C.34)

m_m_

_(kl,t) thus consists of an infinite string of Dirac delta

functions equispaced along the wavenumber k_, the spacing
between two adjacent delta functions being 2_/d. It is

only the "fundamental mode" or harmonic at k I = k (for m = 0
in Eq. C.34) that corresponds to the trace velocity co of Eq.
(C.31). The remaining infinite harmonics correspond to infinite

other velocities. The rule of radiation (Case l) or no radia-

tion (Case 2) is exactly the same as the one developed for the

continuous array and illustrated in Fig. (C.2). If the funda-

mental mode or any harmonic(s) lie within the radiation span

(-kao, kao) , radiation will occur from the fundamental mode or
from the harmonlc(s) lying within the radiation span.

However, a more interesting and new feature of the discrete

array is the classification based on a different criterion.
That classification is as follows:

X
2_ ao

Case A; -_ > 2kao , or d < --_ (C.35)

X
2_ ao

Case B, -d- < 2ka ° ' or d > --2--
(C.36)

For Case A, the spacing 2_/d along wavenumber k between harmonics

is greater than the radiation span 2k a , since _a = 2_/X^ , where X'

is the acoustic wavelength at frequenc$ m , o _o a
the same condition is expressed by-tne_st_ement that the array o

spacing d is smaller than half the acoustic wavelength. For
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Case B, the opposite situations occur in the wavenumber and

spatial descriptions.

The importance of these two cases is depicted in the next
few figures. Figure C.5 describes Case A1 (the numbers 1 and 2

denote the older classification, 1 corresponds to radiation

occurring, 2 corresponds to radiation not occurring). The radia-

tion occurs from the fundamental mode at k I = k_, but since
2_/d > 2k_ , no other harmonic can radiate. Fl_ure C.6 also

describes _o Case A1, however, thls tlme a harmonic, and only one

harmonic radiates. Figure C.7 shows the Case A2, a situation

one would hope to achieve. The fundamental mode at k. = k^ lles
Just outside the radiation span, and no harmonic lle_ within

the radiation span, hence no radiation occurs. Note that for

this desired slthation, the constraint of Eq. (C.8) (or equi-

valently of Eq. C.22) as well as the constraint of Eq. (C.35)

applies.

Finally, Fig. C.8 shows Case B1. There is no Case B2.

Radiation must occur through same mode(s), whether the phase

velocity co is subsonic or supersonic. In other werds, arranging
for Case B, i.e., having array spacing d greater than half the

wavelength, is basically a poor design.

Note that in contrast to the continuous llne array for

which the discussion related to Flg. C.2 for frequency mA could
be generalized to discussion related to Flg. C.3 for allUfre -

quencles, the discussion of the discrete array presented above

cannot be similarly generalized to all frequencies. Thls is

because the array spacing d is in general fixed, whereas the

radiation span 2k_ increases linearly with increasing mo"
Thus, Case A for ao frequency _o is bound to merge Into Case B

at some higher frequency.

Aside from the re-definltion in Sec. C.2 of the radiation

span In wavenumber k_, induced by consideration of moving-medlum
acoustics, the above discussion of a discrete array Is applied

to determine the number of stator blades, the spacing d correspond-

ing to the circumferential spacing between two adjacent stator

tips, and frequency _o corresponding to the blade passage fre-
quency.
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FIG. C. 5. CASE A1 FOR A DISCRETE ARRAY; RADIATION FROM THE

FUNDAMENTAL HARMONIC AT k .
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A HARMONIC
RADIATES
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FIG. C.6. CASE Al; RADIATION FROM A HARMONIC OTHER THAN

THE FUNDAMENTAL.

NO HARMONIC

RADIATES
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l
ko+ ?._idLkm

FIG. C.7. CASE A2; NO RADIATION.

I
ko-2"rr/d k o

'_ ( kl,t )

-koo ko+2"tr/d koo ko+4"rr/d ko÷6w'/d

FIG. C.8. CASE Bl; INEVITABLE RADIATION.
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C.2 Acoustics of a Moving Medium

The only task that needs to be performed in this section is

to investigate how the radiation span (-kao , +kao) along the
wavenumber k I gets modified due to the fact that the
acoustic medium is moving uniformly wlth subsonic velocity

u = (ul, u2, u3) , where ul, u2, u 3 are the velocity components

in the x, y and z directions.

Once again, consider the llne monopole source of Fig. C.I,

with Eqs. (C.1) through (C.5) still applicable. In addition to

the radial coordinate r of Eq. (C.3), the corresponding radial
vector r is defined as

r = (y,z) (C.37)

The far field pressure P(x,_,t) now must satisfy the follow-

ing field equation, (Morse and Ingard, 1964),

V2p + kao2 1 + i___o u1 _-_ + u2 _-_ + u3 _-_ P = 0 (C.38)

For u I = u 2 = u 3 = 0, Eq. (C.38), reduces to the usual Helmholtz
equation applicable for a stationary acoustic medium. In analogy

with Eq. (C.11), a criterion is needed that the radial wavenumber

kr must satisfy for no radiation to occur to the far field (i.e.,

Case 2). However, in analogy with generalization of Eq. (C.3) to

Eq. (C.37), a radial wavenumber vector kr is defined as

kr = (k 2, k 3) , (C.39)

where k 2 and k s are the wavenumber components of the radially
outwards propagating wave.

Now the important phase aspect of the far field pressure

P(x,_,t) (for a given value of r in the farfield) is given by
the correspondingly generallzed-version of Eq. (C.6)

i(koX - kr • _ - _o t)
P(x,[,t) = constant x e (c.4o)

I/
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where

kr • r=ky+kz-- 2 3
(c.41)

The f611owing definitions are required:

kr = Ikrl = (k 2 + k2) I/2
2 3

Ur = fUrl = (u22 + u2)I/23

(C.42)

(C.43)

k = k sine k2 r

k = k cose_
3 r K

U = U slne
2 r u

u = UrCOSe u ,3

(C.44)

(C.45)

(C.46)

(C.47)

so that

k • u = ku + ku
r r 2 2 3

= k u cose ,
3 r r

(C.48)

where

e = (ok - _u ) (C.49)

Thus, _ is the angle between the radial wavenumber vector kr (or

the radial location vector (y,z) of observation in the far=-

field) and the radial flow vector Ur.

Now, substituting Eq. (C.40) into Eq. (C.38) gives the follow-

ing relation,
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2 _ k 2 + k 2 [i I (u k + u k cos_)] 2 = 0
-kr o a° - _-_ i o r r

(c.5o)

which can be rewritten as a quadratic equation in k
r

Ak 2 + Bk + C = 0
r r

where

k 2
a

A =
2

(h
O

k 2
a

B= 2 o.
2

q

U 2 C0S2_ - i = m 2 COS2a - I
r r

k 2
a
o

UlkoU r cosa - 2
O

U COS_
r

as follows

(c.51)

(C,52)

and

= 2(m m k cosm - k m cosa)
1 r o a r

O

k 2 k 2U2

ao a l
C = (_k2 + k 2 _ 2 __ u k + 0

0 a (,0 1 0 2
0 0 (_

0

k 2 )
0

(C.53)

= (-k 2 + k 2 _ 2k m k + m2k 2)
o a° ao , o I o

(C.54)

In the above equations appropriate Mach numbers are introduced

by division of velocities by the sound speed c = mo/kao.
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For the stationary acoustic medium, the condition on radial

wavenumber magnitude kr, for no radiation to occur (Case 2) eWaSthat kr be imaginary ('see Eq. C.11). In analogy with that _

quirement for no radiation to occur, it is required that k_ of
Eq. (C.51) be complex (with positive imaginary part). Tha_ will

happen if and only if

AC- B214 > 0 . (c.55)

Now, the left hand side of Eq. (C.55) does not contain kr,

but is'a quadratic form in ko, the wavenumber of the source
wave. Thus, Eq. (C.55) can be rewritten as

DK_ + Ek o + F > 0 , (C.56)

where

D = i - m 2 - m 2 cos2_ (C.57)
I r

E = 2k m (C.58)
a o i

F = -k 2 (C.59)
a o

The minimum value of D occurs for _ = 0 or _ (i.e., when kr

and ur are coincident or oppositely directed. This minimum --

--value Dminm is given by

Dminm = 1 - m 21 - mr2 = 1 - m 2 > 0

where m is total flow Mach number. Since Dminm, and therefore D
is always positive, the left hand side of Eq. (C.56) is

positive for large Ikol (i.e., for k o ÷ ±_), being dominated by

the first term Dk_. This behavior, incidently, is consistent
with the inequality expressed by Eq. (C.56). Recalling that

the inequality of Eq. (C.56) is the condition on k o for no

radiation to occur (i.e., Case 2), the radiation will, in fact,

take place for a range of wavenumbers ko of relatively small
magnitude. This range, the radiation span along axial wave-

number kl, is determined by the two reaZ roots kao + and kao - of
the quadratic form of Eq. (C.56)

C-19



k = k
ao_+ ao

-m ±(l-m_cos2a) IA
(c.60)

(l_m2-m2cos2m)
1 r

In analogy with Fig. C.2, this radiation span is shown as a

shaded strip in Fig. C.9. The center O' of the span is shifted

to the left by the amount ml/D (with D given by Eq. (C.57)
from the origin 0 (k =0). ka° This shift resulting from first

(common) term on the*rlght hand side of Eq. (C.60), is interpreted

as a Galilean shift. The equal intervals (k_ , 0') and O' fkao +)
resulting from the second terms on the right _o- hand slde _

Eq. (C.60) are interpreted as Lorentz half-spans.

Also shown in Flg. C.9 is _(kl,t) for a phase wave whose phase

velocity Co is supersonic in the fixed coordinate system (or

equivalently whose k o is less than ), yet since ko lies out-
side the radiation span, the ka° particular phase wave

illustrated will not radiate to the farfleld.

Reformulation of the condition of no radiation In terms of

Mach numbers can be done along exactly similar lines as done in

Eqs. (C.19), (C.20) and (C.21). Thus, the upper and lower permis-

sible Mach numbers m u and m£ are given by

(l-m2-m_cos2m)
m_ l ,_ = ml (l-m2cos2a) I_

-m -(l-m_cos 2_)
1

(C.61)

(l_m_-m2cos2m)
i r , (C.62)m = -- = m +(l-m2cos2e) IA

u -ml +(l-m2c°s2a)IAr i r

[

[

and for no radiation to occur, the following must be satisfied:

m£ < m o < mu
(C.63)

D"

U

C-20



q(kl,t)

k I

ka o -ka o _ _; kao÷ k° ka o

koom i/D

FIG. C.9. SKETCH OF RADIATION SPAN ALONG WAVENUMBER k
l

FOR A MOVING ACOUSTIC MEDIUM.
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Extension similar to that from Figs. C.2 to C.3 can also be

easily performed for the present case; as a result of the medium

motion, the acoustic "cones" of radiation in the _-k plane will
be asymmetrical about the _ axis. i

Finally, the entire discussion of discrete arrays in Sec. C.2

can be applied here with the newly defined radiation span.
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C.3 An Estimate Of Overall Power Radiated From The Stator

Figure C.10 shows the wake velocity deficits as viewed In

time at one SBLE near the tip. There are f such deficits per

second, where f = 8600 Hz is the rotor bla_e passage frequency.
Each individual r wake deficit, v(t) has an approximately Gaussian

shape around its peak deficit value Vo, thus

-t2/2T 2
v(t) : v e • (C.64)

O

where the "standard deviation" T, and the maximum deficit v o are
estimated to be:

T : 9.6 x 10 -6 sec.
(C.65)

v : 44 m/sec (144 ft/sec)
O (C.66)

The maximum deficit, v_ corresponds to i0 ° change in angle of

attack. The time interval T between consecutive deficits is

given by

_ I sec. (C.67)f : 1.16 x i0 -_
r

Note that T is about an order of magnitude greater than T,

in other words the wake deficits are narrow in time when compared
to their rate of arrival.

The above data regarding the wake velocity deficits was

developed from Kemp and Sears (Ref. 18). The description of the

wake velocity deficit in a spatial coordinate, x, can be obtained

by assuming that the wakes arrive at the SBLE tips as (locally)

frozen spatial patterns, being convected along with the local gas

speed V, where

2) I_ c = 195 m/s (6_I (C.68)
V = (mc2 + m a ft/sec)
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FIG. C.lO. SKETCH OF TIME HISTORY OF WAKE VELOCITY
DEFICITS AS THEY IMPINGE ON A SINGLE
SBLE TIP.
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mc and ma being given by Eqs. 21 and 22 . Thus, the spatial
picture of a wake velocity deficit is obtained by the trans-
formation,

x = Ut . (C.69)

For estimating the overall acoustic power radiated from
the stator it is convenient, as shown below, to integrate the
results in the time domain. However, in order to get a qualita-
tive understanding of the situation in the frequency domain we
discuss briefly the Fourier transform _(m) of v(t) of Eq. (C.64).

1
rJ v(t)e i_t dt (C 70)v(_) - 27

Wv
o -_2T2/2

e (C.?L)

The Fourier transform _'(_) of the sequence of pulses of

Fig. C.10 may then be written as

_,(m) = 1

1

21T

I v'(t)e i_t dt

_--_

v(t-x._) ei_t dt
(C.72)

--v(_) _r
n_m_

(_-n_ r ) (C.73)
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m

where m is the blade passage frequency In radlans/sec (see

Eqs. o 17 and 18 ),

2_ _ _B . (C.74)
_O = 2_fr = T

Thus, as expected, the frequency content of the rotor wake

velocity deficits v'(t) consists of the various rotor harmonics

n. Since $(m) does not decay appreciably with increasing

frequency (the "standard deviation" of V(_) is l/T) the higher

rotor harmonics at n = ±2, ±3, etc. have nearly the same strength

or amplitude as the fundamental harmonic at n = ±l.

Now, reverting back to the time domain analysis, the

fluctuating lift _(t) generated at the leading edge of a SBLE

tip from impingement of one wake deficit v(t) is given by

_(t) = I

0

v(t') h(t-t') dt' (c.75)

where h(t) is the unit impulse response function derived from

K{_ssner's function [Bisplinghoff et al., Ref. 19]. Since the

essential uncancelled fluctuating llft Is restricted to a

relatively small segment of the SBLE span near the tip, use
of KGssner's function, valid for low aspect ratio, is readily

justified for the present calculation. Since KGssner's function

gives the lift due to a sharp-edged gust (i.e., due to a gust
that is a unit step function), the unlt impulse response function

h(t) is obtained by differentiating the KUssner's function.

h(t), so obtained, is given by

h(t) = CL lOT13 -O.13t/_ b 1 -t/_b 1e + 2_ b e , (C.76)

C-26



where _ is the time taken by the gust to travel the (swept)
semicho_d b.

Tb = b/U = 1.33 x I0 -_ sec. (C.77)

The above estimate of _b is based on b =0.034 m (0.11 ft), and U of

Eq. C.68. The lift coefficient CL is given by

r

CL = 2_pUb -_- , (C.78)

where p is the medium density ( 2.4 × l0 -_ lb-sec2/ft _

=1.24 Kg/m 3) and k_ is the acoustic wavelength at blade passage fre-

quency fr (Eq. 26)] Note that in Eq. C.78, kr/4 denotes a rough

estimate of the SBLE span near the tip from which the un-

cancelled fluctuating lift is estimated to radiate. Now, this
choice of k /4 is suitable (only) for the rotor fundamental

harmonic at r frequency _ . For the higher rotor harmonics of

Eq. C. 73, correspondingl_ smaller spanwise length scales would

be more appropriate. However, in the time domain analysis that

is being pursued, the choice of kr/4 in Eq. C. 78 is taken to
apply to all the rotor harmonics, therefore the resulting
estimate of the overall (i.e., frequency-lntegrated) radiated
power is liable to be conservative.

Substituting Eqs. (C.64) and (C.76) into Eq. (C.75), enables

calculation of fluctuating lift _(t) at a single SBLE tip due to

the impingement of a single wake velocity deficit v(t). Since

the minimum time constant _b of h(t) is much larger than the time

constant or "standard" deviation" T of v(t) [compare Eqs. (C.65)

andS.77)], for evaluating _(t) from Eq. (C.75), one can Justifi-

ably approximate v(t) of Eq. (C.64) as follows,

v(t) = v (2_) I/2 T6(t) . (C.79)
0

C-27



I

The constant (2_) I/2 T in Eq. (C.79) Is introduced so as to make

the total "area" (In other words, the integral Iv(t) dt the

same for Eqs. (C.64) and (C.79). From Eq. (C.70) and (C.71), note

that this area is equal to 2_(_)im=0. Substituting Eq. (C.79)

Into Eq. (C.75), gives

£(t) = v0(2_) I/2 T h(t) • (C.80)

From the point of vlew of generation of steady lift, the

stator blade chord Is expected to be oriented parallel to the

flow velocity U at its leading edge, so that a zero mean angle

of attack Is ensured. Hence, the wake-deficit-induced fluctuating

llft of Eq. C.80 Is oriented normal to the flow velocity U. The

acoustic intensity I(t) radiated by thls "transverse" dipole

(i.e., the direction of fluctuating lift is normal to flow) is

given by [Lighthill,Ref. I_; Morse and Ingard, Ref. 17],

I

I(t) = [2£(t)] 2 1 G (m)

12p_c 3 2

(c.81)

where _(t) = d/dt £(t) and G2(m) is a function of the flow Mach

number m = U/c,

l+m ]
G (m) = _ 2 1 9_n -- • (6 82)
2 m 2 (l-m 2 ) m' l-m

The factor 2 appearing with £(t) in Eq. C.S1 accounts for the

baffling effect due to the presence of the duct wall (assumed

to be acoustically rigid) enclosing the SBLE tip.

The radiated acoustlc energy E, associated wlth the intensity

I(t) of Eq. C.81 Is given by

I°E = l(t) dt. (C.83)

0
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From Eqs. C .76, C.80 and C.81, we note that the only time depen-

dent factor of I(t) involves h(t) of Eq. C.76, hence, the integral
to be evaluated is

I l_(t)2dt = CL2 0.1333
0 T b

' (C.84)

thus, substituting Eqs. C.80, C.81 and C.84 into Eq. C.83 we get

2 G2(m)

E - 3 s (VoTCL)2
pc

0.133

3
Tb

(c.85)

Now, E is the acoustic energy radiated from a single SBLE

tip due to impingement of a single wake velocity deficit v(t).

Hence, the acoustic power radiated from a single SBLE tip is Eft,
where f is the rate of impingement of wake deficits on the

t rSBLE ip.

Next, assume that the V individual SBLE tips radiate

more or less incoherently (an assumption particularly valid

for higher rotor harmonics n of Eq. C. 73). Hence, the power

radiated from the V stator tip sources is Ef V.
r

Finally, even though the calculation for the power radiated

from the stator leading edge sources at the hub is not carried

out separately, because of closer circumferential spacing between

these hub sources, the total power radiated from the stator hub

is likely to be considerably less than that from the stator tip.
The total power H radiated from the stator is conservatively

estimated to be given by

H = 2El V
r

(c:_86)

]
C-29



Substituting in Eqs. (0.85) and (C.86) the numerical values

quoted for various parameters (with V = 59) gives

--12

H = 130.5 dB re I0 watt .
(C.87)

U'
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APPENDIX D: NOTESON EMPIRICAL CALCULATION OF FAN NOISE LEVELS l

As mentioned in Section 7, all components of the rotor and

stator noise spectrum could not be calculated from basic con-

siderations. The previous Appendix gives a noise level cal-
culation for the residual stator noise sources. In the interest

of determining what reduction in levels the swept rotor might

be expected to cause, Burdsall's empirical correlation (Ref.

19), was exercised for both the actual fan model and a "full

scale" counterpart. The parameters required in Burdsall's

routine are given in Table D-1. Figure D-1 summarizes the

narrow band power levels and spectra for the various components,

(SPL arbitrarily computed at 150 ft., 60 ° from rotor axis)

showing the predominance of MPT'S. Of course, the details of

the MPT spectrum vary from fan to fan due to their origin in

manufacturing tolerances. Fig. D-2 shows a typical comparison

of Burdsall's prediction with measured data, indicating a fairly

large fluctuation in harmonic levels around the mean line of

the prediction. In Fig. D-l, it is clear that according to this

scheme, elimination of MPT's would reduce the tone levels

considerably. However, note that in Fig. D-l, the line is an

envelope of discrete frequency levels at various multiples of

rotation rate while the broadband spectrum is continous. Thus,

integration into constant percentage bandwidths, and into overall
levels will lead to the MPT and broadband levels belog very nearly

identical.

As a final point, it is interesting to note that the power

level of the BPF tone (non-MPT noise) is ~10 dB above the

predicted level for the swept stator as described in Appendix
C.

E

r
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APPENDIX E. ALGORITHM FOR DERIVATION OF STATOR LEADING EDGE TRACE
VELOCITY IN STATORFIXED COORDINATES

The geometry of a rotor wake as it reaches the stator is
given in Fig. E-I. Refer to Fig. 9b in the text for 3-dimensional
representation. The following four steps give the rotor wake shape
and local trace velocity for both an unswept stator (or at the
inlet plane of a swept stator), and for swept stators. Aerodynamic
reaction on the rotor path by the stator is not taken into account.

ROTOR WA
FOR SWEPT

STATO R

ROTOR WAKE AT
STATOR INLET

PLANE

FIG. E-l. GEOMETRY FOR CALCULATION OF ROTOR WAKE SHAPE AND TRACE

SPEED ON STATOR VANES.

1) Unswept, Unskewed Stator

The skew of the rotor wake at stator plane is a(r).

local angle between the wake and the radial direction may be
derived from:

tan 0 = r _/6r-
W

The

E-2



The trace velocity in the radial and axial directions is
respectively

VT (r) = (wr)/tan w(r)
BR

and

VT = 0
Bx

where:

VTBR, x

= the trace velocity in blade fixed coor-
dinates for radial and axial directions
respectively.

2) Add Sweep _B

The rotor wake in the conical surface of the swept leading
edge is changed, as follows.

wr

V T (r) = tane,w(r)
BR

where tan6' = rw T_

and

V' (r) = VT tan_B(r)
TB B R

X

where _B(r) = local blade sweep angle.

E-3



a'(r) = a(r) + _x _a(m)
_X

where Ax is the downstream displacement of the leading edge caused
by sweep.

tanS' (r)= r 8[_(r) + Ax _I
w 8r

8a(r) 8Za(r)
= r + r Ax

6r _xSr
+ r

8kx 8a(r)

8r 8x

8tan0w
= tan0 + Ax

w 6x
6_(r)

+ r _ tanlJ B

+ r 8a(r)
tane'w(r) = tanew 8x tan_B

3) Trace Velocity for Swept Stator in Stator-Fixed Coordinates

The radial component of trace velocity is

vT (r)=
BR

wr

, + 8a(r)
tane w r_ tanu B

where tane* (r x) = tane w + AxW

tan
W

_X

The axial component is:

wr tan0 B

V T (r) = r6_(r)8._Bx tanew* + -- tan_ B

E-4



where 8" is determined from cross-plots of the wake path in the
w

r,a plane at various axial locations, and 6a/6r = the local wake

helix pitch angle determined from wake crossplots in the meri-
dional plane.

4) Transformation of Trace Velocity Amplitude
Fixed Coordinates to Gas-Fixed Coordinates

From Stator-

VT "IBR, x VTG

[< ) 1= 2 V 2 V 2
BxVT _ VB x + TB R + Gc

where V G
X,C

is the gas velocity in the axial and circumferential

directions, respectively.
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LIST OF SYMBOLS

A

Ain

Amin

A
S

a o t/k

b

B

C

Co

CG

CL

D

DCA

d

d£

E

f

f
r

axial

inlet area (to rotor passage)

geometric throat area

area to choke the flow

normalized distan

blade semichord

number of blades

chord length; sound speed

phase or trace velocity; sound speed

center of gravity

lift coefficient

diffusion factor

double circular area (blade profile)

distance from blade section c.g. to pressure

surface; circumferential spacing between

adjacent stator tips

swept leading edge element

acoustic energy (radiated from a single SBLE tip)

Mach factor ( = I/Mw_L) ; frequency

blade passage frequency of rotor blade
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LIST OF SYMBOLS (Cont.)

AFj

a2(m)

h

I

J

k

k
r

L

LCF

LE

Lmn

m

M

M
W

M
Wl

centrifugal force at center of a blade volume
element located at J

function of flow Mach number

unit impulse response function

acoustic intensity

source number

wavenumber; constant

radial wavenumber

harmonic

distance from section c.g. to leading edge;
fluctuating lift

low cycle fatigue

leading edge

rotor/stator interaction harmonic

circumferential mode number; component of
Mach number; function in deviation angle
formula

Mach number; moment

relative flow Mach number component

relative inlet Mach number

Z !

Wl

M

w, L

Mach number required for a subsonic edge to
achieve sonic ( = M )

Wl

component of Mach number which is always normal
to the leading edge ( = 1 for sonic LE; < 1

for subsonic LE
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LIST OF SYMBOLS (Cont.)

Z !

w_ L

AMij

N

n

P

P or p

P

P/P

PNL

q

A

R

Rc

r

g

SAP

SCF

SBLE

SR

Mach number required to make a subsonic LE
a sonic LE

moment of j force about c.g. of section i

rotation rate

shape parameter for polynomial blade forms;
harmonic number

total pressure; static pressur

far field acoustic pressure

location of leading edge point

pressure ratio

static pressure after normal shock

Perceived Noise Level

source strength

monopole source strength per unit length

distance from origin

radius of curvature of streamline

radial distance

circumferential blade spacing

Structural Analysis Program

Stress Concentration Factor

Stator Blade Leading Edge

sweep reversal
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LIST OF SYMBOLS (Cont.)

t

t(x)

T

TE

U or u

V

V0

V

AVj

W

Was

w/w

w

Ax

X

z, zL

thickness; time

thickness distribution

standard deviation (time)

trailing edge

air velocity; wheel speed

velocity

peak velocity defect

number of stator vanes; velocity

volume element of a blade

mass flow rate; velocity; inlet relative

velocity

average velocity

specific mass flow

flow deceleration rate

relative velocity

downstream displacement of SBLE caused by

sweep

linear distance

axial coordinate of leading edge
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LIST OF SYMBOLS (Cont.)

GREEK

Ol

Of3

B

Y

6

_a

E

Ej

q

e

ew

e ,
W

angle of attack; angle between radial wave
vector k and radial flow vector • local

r Ur '

Mach angle; wake displacement angle from
radial

stator inlet angle

relative flow angle; exit angles of flow

setting angle; ratio of specific heats

flow deviation angles; Dirac delta function

stator deviation angle

slope of the relative flow velocity; slope

between lines connecting section LE and CG

and a llne connecting LE with lower surfaces

coordinate at mld-chord (e = sln-IVr/wl)
W!

centerllne-proJected displacement of the

c.g.'s of an airfoil section at r. relative

to one at r i J

acoustic wavelength

acoustic wavelength at blade passage frequency

polytropic state efficiency

circumferential angle

angle between radius and rotor wake centerline,
unswept stator

angle between radius and rotor wake centerllne,
swept stator

]
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LIST OF SYMBOLS (Cont.) II

p

T

T b

_r

angular abscissa of leading edge point

Mach cone angle; radial order of acoustic

modes

stator sweep angle

projection of the Mach cone angle on the

w-r plane

hub-to-tip ratio; lateral sweep angle;

section thickness ratio (tmax/C); relative
thickness

acoustic power

density

sweep angle; stress; cascade solidity

shear stress; LE and TE thickness factors;
time interval between successive events

time for a gust to travel the swept semi-

chord (b)

local camber angle; angle between leading

and trailing edge along the unwrapped conical

surface

mean camber angle

radian frequency; wheel rotation speed

radian frequency of blade passages

shaft rotation frequency

[

I
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LIST OF SYMBOLS (Cont.)

SUBSCRIPTS

A

a

ax

B

C

crlt

cg

D

G

g

i

i, J

L

A

M

m

mlnm

O

R

axial; along blade leading edge

acoustic

axial

blade-fixed coordinates

circumferential

critical

center of gravity

defect

gas-flxed coordinates

geometric

component parallel to blade array

indices of spatial coordinates

normal to leading edge; leading edge

lower

mainstream

meridional component

minimum

trace speed

radial
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LIST OF SYMBOLS(Cont.)

r

T

t

U

W

X

Y

Z

1,2,3

1

2

3

4

I

I

I

radial; component normal to b_lade array

tangentlal; wake trace

tip

upper; tangential

tangential

chordwise distance from LE; direction normal
to z-axis

Cartesian coordinate normal to z-axls

axial

freestream relative

x, y, and z directions

rotor inlet station

rotor exit station

stator inlet station

stator exit station
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