231 research outputs found

    Instability and finite-amplitude self-organization of large-scale coastline shapes

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 371 (2013):20120363, doi:10.1098/rsta.2012.0363.Recent research addresses the formation of patterns on sandy coastlines on alongshore scales that are large compared with the cross-shore extent of active sediment transport. A simple morphodynamic instability arises from the feedback between wave-driven alongshore sediment flux and coastline shape. Coastline segments with different orientations experience different alongshore sediment fluxes, so that curvatures in coastline shape drive gradients in sediment flux, which can augment the shoreline curvatures. In a simple numerical model, this instability, and subsequent finite-amplitude interactions between pattern elements, lead to a wide range of different rhythmic shapes and behaviours—ranging from symmetric cuspate capes and bays to alongshore migrating ‘flying spits’—depending on the characteristics of the input wave forcing. The scale of the pattern coarsens in some cases because of the merger of migrating coastline features, and in other cases because of non-local screening interactions between coastline protrusions, which affect the waves reaching other parts of the coastline. Features growing on opposite sides of an enclosed water body mutually affect the waves reaching each other in ways that lead to the segmentation of elongated water bodies. Initial tests of model predictions and comparison with observations suggest that modes of pattern formation in the model are relevant in nature

    Assessing Ability to Forecast Geomorphic System Responses to Climate and Land-Use Changes

    Get PDF
    As the global community faces the effects of ongoing and future climate and land-use changes (C&LUC), geoscientists are called to action to assess the risks associated with such changes, assist with forecasts of future Earth states, quantify hazards to life, and suggest reasonable adaptation strategies. Earth surface scientists have developed conceptual and mathematical models for how geomorphic systems, including those associated with natural hazards that put trillions of dollars in infrastructure and tens of millions of lives at risk, will respond to and give feedback on C&LUC

    An evolving research agenda for human–coastal systems

    Get PDF
    Within the broad discourses of environmental change, sustainability science, and anthropogenic Earth-surface systems, a focused body of work involves the coupled economic and physical dynamics of developed shorelines. Rapid rates of change in coastal environments, from wetlands and deltas to inlets and dune systems, help researchers recognize, observe, and investigate coupling in natural (non-human) morphodynamics and biomorphodynamics. This same intrinsic quality of fast-paced change also makes developed coastal zones exemplars of observable coupling between physical processes and human activities. In many coastal communities, beach erosion is a natural hazard with economic costs that coastal management counters through a variety of mitigation strategies, including beach replenishment, groynes, revetments, and seawalls. As cycles of erosion and mitigation iterate, coastline change and economically driven interventions become mutually linked. Emergent dynamics of two-way economic–physical coupling is a recent research discovery. Having established a strong theoretical basis, research into coupled human–coastal systems has passed its early proof-of-concept phase. This paper frames three major challenges that need resolving in order to advance theoretical and empirical treatments of human–coastal systems: (1) codifying salient individual and social behaviors of decision-making in ways that capture societal actions across a range of scales (thus engaging economics, social science, and policy disciplines); (2) quantifying anthropogenic effects on alongshore and cross-shore sediment pathways and long-term landscape evolution in coastal zones through time, including direct measurement of cumulative changes to sediment cells resulting from coastal development and management practices (e.g., construction of buildings and artificial dunes, bulldozer removal of overwash after major storms); and (3) reciprocal knowledge and data exchange between researchers in coastal morphodynamics and practitioners of coastal management. Future research into human–coastal systems can benefit from decades of interdisciplinary work on the complex dynamics of common-pool resources, from computational efficiency and new techniques in numerical modeling, and from the growing catalog of high-resolution geospatial data for natural and developed coastlines around the world

    Forecasting the response of Earth\u27s surface to future climatic and land use changes: A review of methods and research needs

    Get PDF
    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth\u27s surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail. © 2015 The Authors. Earth\u27s Future published by Wiley on behalf of the American Geophysical Union

    Exploring the sensitivities of crenulate-bay shorelines to wave climates using a new vector-based one-line model

    Get PDF
    We use a new exploratory model that simulates the evolution of sandy coastlines over decadal to centennial timescales to examine the behavior of crenulate-shaped bays forced by differing directional wave climates. The model represents the coastline as a vector in a Cartesian reference frame, and the shoreface evolves relative to its local orientation, allowing simulation of coasts with high planform-curvature. Shoreline change is driven by gradients in alongshore transport following newly developed algorithms that facilitate dealing with high planform-curvature coastlines. We simulated the evolution of bays from a straight coast between two fixed headlands with no external sediment inputs to an equilibrium condition (zero net alongshore sediment flux) under an ensemble of directional wave climate conditions. We find that planform bay relief increases with obliquity of the mean wave direction, and decreases with the spread of wave directions. Varying bay size over 2 orders of magnitude (0.1–16 km), the model predicts bay shape to be independent of bay size. The time taken for modeled bays to attain equilibrium was found to scale with the square of the distance between headlands, so that, all else being equal, small bays are likely to respond to and recover from perturbations more rapidly (over just a few years) compared to large bays (hundreds of years). Empirical expressions predicting bay shape may be misleading if used to predict their behavior over planning timescales

    Reply to comment by M. Ortega-Sánchez et al. on “High-angle wave instability and emergent shoreline shapes : 1. Modeling of sand waves, flying spits, and capes”

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): F01006, doi:10.1029/2007JF000885

    Complex coastlines responding to climate change: do shoreline shapes reflect present forcing or “remember” the distant past?

    Get PDF
    A range of planform morphologies emerge along sandy coastlines as a function of offshore wave climate. It has been implicitly assumed that the morphological response time is rapid compared to the timescales of wave climate change, meaning that coastal morphologies simply reflect the extant wave climate. This assumption has been explored by focussing on the response of two distinctive morphological coastlines – flying spits and cuspate capes – to changing wave climates, using a coastline evolution model. Results indicate that antecedent conditions are important in determining the evolution of morphologies, and that sandy coastlines can demonstrate hysteresis behaviour. In particular, antecedent morphology is particularly important in the evolution of flying spits, with characteristic timescales of morphological adjustment on the order of centuries for large spits. Characteristic timescales vary with the square of aspect ratios of capes and spits; for spits, these timescales are an order of magnitude longer than for capes (centuries vs. decades). When wave climates change more slowly than the relevant characteristic timescales, coastlines are able to adjust in a quasi-equilibrium manner. Our results have important implications for the management of sandy coastlines where decisions may be implicitly and incorrectly based on the assumption that present-day coastlines are in equilibrium with current conditions

    Effects of Marsh Edge Erosion in Coupled Barrier Island-Marsh Systems and Geometric Constraints on Marsh Evolution

    Get PDF
    Sand washed across barrier islands during storms (called overwash) provides sediment for salt marshes behind those islands, and can allow a marsh which otherwise would drown to grow vertically fast enough to keep up with sea level. We use a barrier island-marsh evolution model (GEOMBEST+) to see what effect marsh edge erosion by waves has on overwash-supported marshes. Consistent with previous research, we find that wave erosion can make marshes more resilient by freeing sediment that can be used elsewhere on the marsh surface. We add that horizontal erosion of the marsh edge provides more sediment per volume eroded than vertical erosion of the marsh surface. This is because the bottom layers of the marsh contain more sediment (that can stay on marsh surfaces), while the surface layers include plant material (that drifts away or decomposes). We also find that when the marsh and bay are keeping up with sea level, expanding or eroding the marsh is the only way to change the volume of the bay, so how fast the marsh is expanding or eroding can be predicted using geometry, knowing only the size of the basin, sea-level-rise rate, and the net rate of sediment import or export

    Is the Old Testament Dying? An Academic Discussion

    Get PDF
    • 

    corecore