2,498 research outputs found

    Lessons from the Canadian Cattle Industry for Developing the National Animal Identification System

    Get PDF
    The primary focus of animal identification programs, which are rapidly developing throughout the world, is to effectively respond to animal health emergencies that have the potential to cause devastating consequences to animal and public health. Additional benefits of an animal identification program include maintaining or expanding international trade, increased consumer confidence, and improved supply chain management. The primary objective of this paper is to provide a series of recommendations for the U.S. to consider as it continues to develop the National Animal Identification System. The secondary objective is to explain how some progressive operations, spanning all sectors of the live cattle and beef industry supply chain complex in Canada, have utilized the technology of the mandatory cattle identification program to improve management intensity.Animal Identification, Canadian Cattle Identification Agency, National Animal Identification System, Research and Development/Tech Change/Emerging Technologies, Q10, Q16,

    Diphtheria Toxin and Cytosolic Translocation Factors

    Get PDF

    The Gut Microbiota Composition in Dichorionic Triplet Sets Suggests a Role for Host Genetic Factors

    Get PDF
    peer-reviewedMonozygotic and dizygotic twin studies investigating the relative roles of host genetics and environmental factors in shaping gut microbiota composition have produced conflicting results. In this study, we investigated the gut microbiota composition of a healthy dichorionic triplet set. The dichorionic triplet set contained a pair of monozygotic twins and a fraternal sibling, with similar pre- and post-natal environmental conditions including feeding regime. V4 16S rRNA and rpoB amplicon pyrosequencing was employed to investigate microbiota composition, and the species and strain diversity of the culturable bifidobacterial population was also examined. At month 1, the monozygotic pair shared a similar microbiota distinct to the fraternal sibling. By month 12 however, the profile was more uniform between the three infants. Principal coordinate analysis (PCoA) of the microbiota composition revealed strong clustering of the monozygotic pair at month 1 and a separation of the fraternal infant. At months 2 and 3 the phylogenetic distance between the monozygotic pair and the fraternal sibling has greatly reduced and by month 12 the monozygotic pair no longer clustered separately from the fraternal infant. Pulse field gel electrophoresis (PFGE) analysis of the bifidobacterial population revealed a lack of strain diversity, with identical strains identified in all three infants at month 1 and 12. The microbiota of two antibiotic-treated dichorionic triplet sets was also investigated. Not surprisingly, in both triplet sets early life antibiotic administration appeared to be a major determinant of microbiota composition at month 1, irrespective of zygosity. By month 12, early antibiotic administration appeared to no longer exert such a strong influence on gut microbiota composition. We hypothesize that initially host genetics play a significant role in the composition of an individual’s gut microbiota, unless an antibiotic intervention is given, but by month 12 environmental factors are the major determinant.This study was performed as part of the INFANTMET project (10/RD/Infantmet/MFRC/705) and was funded by the Government of Ireland's Department of Agriculture Fisheries and in part by Alimentary Pharmabiotic Centre. KM is a Teagasc Walsh Fellow. CS, RPR and PWOT are members of The Alimentary Pharmabiotic Centre, which is a Centre for Science and Technology (CSET) funded by the Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (Grant no. 02/CE/B124 and 07/CE/B1368)

    The host galaxies of strong CaII QSO absorption systems at z<0.5

    Full text link
    We present new imaging and spectroscopic observations of the fields of five QSOs with very strong intervening CaII absorption systems at redshifts z<0.5 selected from the Sloan Digital Sky Survey. Recent studies of these very rare absorbers indicate that they may be related to damped Lyman alpha systems (DLAs). In all five cases we identify a galaxy at the redshift of the CaII system with impact parameters up to ~24 kpc. In four out of five cases the galaxies are luminous (L ~L*), metal-rich (Z ~Zsun), massive (velocity dispersion, sigma ~100 km/s) spirals. Their star formation rates, deduced from Halpha emission, are high, in the range SFR = 0.3 - 30 Msun/yr. In our analysis, we paid particular attention to correcting the observed emission line fluxes for stellar absorption and dust extinction. We show that these effects are important for a correct SFR estimate; their neglect in previous low-z studies of DLA-selected galaxies has probably led to an underestimate of the star formation activity in at least some DLA hosts. We discuss possible links between CaII-selected galaxies and DLAs and outline future observations which will help clarify the relationship between these different classes of QSO absorbers.Comment: Accepted for publication in MNRAS, 14 pages, 9 figures. Version with full resolution images available at http://www.ast.cam.ac.uk/~bjz/papers/Zych_etal_2007a.pd

    Reactive oxygen species induce virus-independent MAVS-oligomerization in systemic lupus erythematosus

    Get PDF
    The increased expression of genes induced by type I interferon (IFN) is characteristic of viral infections and systemic lupus erythematosus (SLE). We showed that mitochondrial antiviral signaling (MAVS) protein, which normally forms a complex with retinoic acid gene I (RIG-I)–like helicases during viral infection, was activated by oxidative stress independently of RIG-I helicases. We found that chemically generated oxidative stress stimulated the formation of MAVS oligomers, which led to mitochondrial hyperpolarization and decreased adenosine triphosphate production and spare respiratory capacity, responses that were not observed in similarly treated cells lacking MAVS. Peripheral blood lymphocytes of SLE patients also showed spontaneous MAVS oligomerization that correlated with the increased secretion of type I IFN and mitochondrial oxidative stress. Furthermore, inhibition of mitochondrial reactive oxygen species (ROS) by the mitochondria-targeted antioxidant MitoQ prevented MAVS oligomerization and type I IFN production. ROS-dependent MAVS oligomerization and type I IFN production were reduced in cells expressing the MAVS-C79F variant, which occurs in 30% of sub-Saharan Africans and is linked with reduced type I IFN secretion and milder disease in SLE patients. Patients expressing the MAVS-C79F variant also had reduced amounts of oligomerized MAVS in their plasma compared to healthy controls. Together, our findings suggest that oxidative stress–induced MAVS oligomerization in SLE patients may contribute to the type I IFN signature that is characteristic of this syndrome

    The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study

    Get PDF
    peer-reviewedHuman milk contains a diverse array of bioactives and is also a source of bacteria for the developing infant gut. The aim of this study was to characterize the bacterial communities in human milk and infant faeces over the first 3 months of life, in 10 mother-infant pairs. The presence of viable Bifidobacterium and Lactobacillus in human milk was also evaluated. MiSeq sequencing revealed a large diversity of the human milk microbiota, identifying over 207 bacterial genera in milk samples. The phyla Proteobacteria and Firmicutes and the genera Pseudomonas, Staphylococcus and Streptococcus were the predominant bacterial groups. A core of 12 genera represented 81% of the microbiota relative abundance in milk samples at week 1, 3 and 6, decreasing to 73% at week 12. Genera shared between infant faeces and human milk samples accounted for 70–88% of the total relative abundance in infant faecal samples, supporting the hypothesis of vertical transfer of bacteria from milk to the infant gut. In addition, identical strains of Bifidobacterium breve and Lactobacillus plantarum were isolated from the milk and faeces of one mother-infant pair. Vertical transfer of bacteria via breastfeeding may contribute to the initial establishment of the microbiota in the developing infant intestine

    LOFAR observations of radio burst source sizes and scattering in the solar corona

    Full text link
    Low frequency radio wave scattering and refraction can have a dramatic effect on the observed size and position of radio sources in the solar corona. The scattering and refraction is thought to be due to fluctuations in electron density caused by turbulence. Hence, determining the true radio source size can provide information on the turbulence in coronal plasma. However, the lack of high spatial resolution radio interferometric observations at low frequencies, such as with the LOw Frequency ARray (LOFAR), has made it difficult to determine the true radio source size and level of radio wave scattering. Here we directly fit the visibilities of a LOFAR observation of a Type IIIb radio burst with an elliptical Gaussian to determine its source size and position. This circumvents the need to image the source and then de-convolve LOFAR's point spread function, which can introduce spurious effects to the source size and shape. For a burst at 34.76 MHz, we find full width at half maximum (FWHM) heights along the major and minor axes to be 18.818.8^\prime ± 0.1\pm~0.1^\prime and 10.210.2^\prime ± 0.1\pm~0.1^\prime, respectively, at a plane of sky heliocentric distance of 1.75 R_\odot. Our results suggest that the level of density fluctuations in the solar corona is the main cause of the scattering of radio waves, resulting in large source sizes. However, the magnitude of ε\varepsilon may be smaller than what has been previously derived in observations of radio wave scattering in tied-array images.Comment: 6 pages, 3 figures, accepted for publication in Astronomy & Astrophysic

    Ranking buffel: comparative risk and mitigation costs of key environmental and socio-cultural threats in central Australia

    Get PDF
    Changed fire regimes and the introduction of rabbits, cats, foxes, and large exotic herbivores have driven widespread ecological catastrophe in Australian arid and semi-arid zones, which encompass over two-thirds of the continent. These threats have caused the highest global mammal extinction rates in the last 200 years, as well as significantly undermining social, economic, and cultural practices of Aboriginal peoples of this region. However, a new and potentially more serious threat is emerging. Buffel grass (Cenchrus ciliaris L.) is a globally significant invader now widespread across central Australia, but the threat this ecological transformer species poses to biodiversity, ecosystem function, and culture has received relatively little attention. Our analyses suggest threats from buffel grass in arid and semi-arid areas of Australia are at least equivalent in magnitude to those posed by invasive animals and possibly higher, because unlike these more recognized threats, buffel has yet to occupy its potential distribution. Buffel infestation also increases the intensity and frequency of wildfires that affect biodiversity, cultural pursuits, and productivity. We compare the logistical and financial challenges of creating and maintaining areas free of buffel for the protection of biodiversity and cultural values, with the creation and maintenance of refuges from introduced mammals or from large-scale fire in natural habitats. The scale and expense of projected buffel management costs highlight the urgent policy, research, and financing initiatives essential to safeguard threatened species, ecosystems, and cultural values of Aboriginal people in central Australia

    Controlling condensation and frost growth with chemical micropatterns

    Get PDF
    Citation: Boreyko, J. B., Hansen, R. R., Murphy, K. R., Nath, S., Retterer, S. T., & Collier, C. P. (2016). Controlling condensation and frost growth with chemical micropatterns. Scientific Reports, 6, 15. doi:10.1038/srep19131In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events
    corecore