146 research outputs found

    Platelets: Functional Biomarkers of Epigenetic Drift

    Get PDF
    Cardiovascular disease (CVD) risk factors can be classed as modifiable or non-modifiable. Physical inactivity and obesity represent major behavioural risk factors for the initiation, development and progression of CVD. Platelet dysfunction is pivotal to the aetiology of CVD, a chronic vascular inflammatory condition, which is characterised by a lag time between onset and clinical manifestation. This indicates the role of epigenetic drift, defined by stochastic patterns of gene expression not dependent on dynamic changes in coding DNA. The epigenome, a collection of chemical marks on DNA and histones, is established during embryogenesis and modified by age and lifestyle. Biogenesis and effector function of non-coding RNA, such as microRNA, play a regulatory role in gene expression and thus the epigenetic mechanism. In this chapter, we will focus on the effect of the modifiable risk factors of physical activity/inactivity and overweight/obesity on platelet function, via epigenetic changes in both megakaryocytopoiesis and thrombopoiesis. We will also discuss the role of acute exercise on platelet function and the impact of cardiorespiratory fitness (CRF) on platelet responses to acute exercise. This chapter will highlight the potential role of platelets as circulating functional biomarkers of epigenetic drift to implement, optimise and monitor CVD preventive management strategies

    Platelets: From Formation to Function

    Get PDF
    Platelets are small, anucleate cells that travel as resting discoid fragments in the circulation. Their average circulating life span is 8–9 days, and their formation is an elegant and finely orchestrated series of cellular processes known as megakaryocytopoiesis and thrombopoiesis. This involves the commitment of haematopoietic stem cells, proliferation, terminal differentiation of megakaryocytic progenitors and maturation of megakaryocytes to produce functional platelets. This complex process occurs in specialised endosteal and vascular niches in the bone marrow where megakaryocytes form proplatelet projections, releasing platelets into the circulation. Upon contact with an injured blood vessel, they prevent blood loss through processes of adhesion, activation and aggregation. Platelets play a central role in cardiovascular disease (CVD), both in the development of atherosclerosis and as the cellular mediator in the development of thrombosis. Platelets have diverse roles not limited to thrombosis/haemostasis, also being involved in many vascular inflammatory conditions. Depending on the physiological context, platelet functions may be protective or contribute to adverse thrombotic and inflammatory outcomes. In this chapter, we will discuss platelets in context of their formation and function. Because of their multifaceted role in maintaining physiological homeostasis, current and development of platelet function testing platforms will be discussed

    A Response to the Draft National Mitigation Plan. Teagasc submission to the Department of Communications, Climate Action & theEnvironment

    Get PDF
    Teagasc SubmissionThis submission details the mitigation potential of agriculture to shortly be published as an update to the Marginal Abatement Cost Curve (MACC) for Agriculture and and describes how the MACC mitigation strategies relate to the measures in the National Mitigation Plan

    Microbiota-related Changes in Bile Acid & Tryptophan Metabolism are Associated with Gastrointestinal Dysfunction in a Mouse Model of Autism

    Get PDF
    peer-reviewedAutism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental conditions worldwide. There is growing awareness that ASD is highly comorbid with gastrointestinal distress and altered intestinal microbiome, and that host-microbiome interactions may contribute to the disease symptoms. However, the paucity of knowledge on gut-brain axis signaling in autism constitutes an obstacle to the development of precision microbiota-based therapeutics in ASD. To this end, we explored the interactions between intestinal microbiota, gut physiology and social behavior in a BTBR T+ Itpr3tf/J mouse model of ASD. Here we show that a reduction in the relative abundance of very particular bacterial taxa in the BTBR gut – namely, bile-metabolizing Bifidobacterium and Blautia species, - is associated with deficient bile acid and tryptophan metabolism in the intestine, marked gastrointestinal dysfunction, as well as impaired social interactions in BTBR mice. Together these data support the concept of targeted manipulation of the gut microbiota for reversing gastrointestinal and behavioral symptomatology in ASD, and offer specific plausible targets in this endeavor.The APC Microbiome Institute is a research institute funded by Science Foundation Ireland (SFI) through the Irish Government's National Development Plan. J.F·C, T.G.D, C.S., S.A.J. and C.G.M.G. are supported by SFI (Grant Nos. SFI/12/RC/2273). S.A.J is also funded by SFI-EU 16/ERA-HDHL/3358. J.F·C, C.S. and T.G.D have research support from Mead Johnson, Cremo, 4D Pharma, Suntory Wellness, and Nutricia. J.F.C, C.S., T.G.D and G.C. have spoken at meetings sponsored by food and pharmaceutical companies

    Involvement of NMDAR2A tyrosine phosphorylation in depression‐related behaviour

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102200/1/embj2009300-sup-0001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102200/2/embj2009300.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102200/3/embj2009300-sup-0003.pd

    Slitrk2 deficiency causes hyperactivity with altered vestibular function and serotonergic dysregulation

    Get PDF
    SLITRK2 encodes a transmembrane protein that modulates neurite outgrowth and synaptic activities and is implicated in bipolar disorder. Here, we addressed its physiological roles in mice. In the brain, the Slitrk2 protein was strongly detected in the hippocampus, vestibulocerebellum, and precerebellar nuclei—the vestibular-cerebellar-brainstem neural network including pontine gray and tegmental reticular nucleus. Slitrk2 knockout (KO) mice exhibited increased locomotor activity in novel environments, antidepressant-like behaviors, enhanced vestibular function, and increased plasticity at mossy fiber–CA3 synapses with reduced sensitivity to serotonin. A serotonin metabolite was increased in the hippocampus and amygdala, and serotonergic neurons in the raphe nuclei were decreased in Slitrk2 KO mice. When KO mice were treated with methylphenidate, lithium, or fluoxetine, the mood stabilizer lithium showed a genotype-dependent effect. Taken together, Slitrk2 deficiency causes aberrant neural network activity, synaptic integrity, vestibular function, and serotonergic function, providing molecular-neurophysiological insight into the brain dysregulation in bipolar disorders

    Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease

    Get PDF
    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis

    Fat Oxidation, Fitness and Skeletal Muscle Expression of Oxidative/Lipid Metabolism Genes in South Asians: Implications for Insulin Resistance?

    Get PDF
    <p><b>Background:</b> South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures.</p> <p><b>Methodology/Principal Findings:</b> Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010); lower VO2max (40.6±6.6 vs 52.4±5.7 ml.kg−1.min−1, p = 0.001); and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg.kg−1.min−1 at 55% VO2max, p = 0.013), and absolute (3.46±2.20 vs 6.00±1.93 mg.kg−1.min−1 at 25 ml O2.kg−1.min−1, p = 0.021), exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10–13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity.</p> <p><b>Conclusions/Significance:</b> These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.</p&gt
    corecore