361 research outputs found

    Isolation and Genetic Analysis of Bovine Viral Diarrhea Virus from Infected Cattle in Indiana

    Get PDF
    Species and biotype distribution was determined in 44 bovine viral diarrhea virus- (BVDV-) positive samples submitted to the Animal Disease Diagnostic Laboratory (ADDL) in Indiana during 2006–2008. BVDV RNA was detected in the 5′-untranslated region and Npro region using reverse transcriptase PCR followed by sequencing analysis of the PCR product. Additionally, cases were classified into one of six categories according to history and/or lesions: acute symptomatic, hemorrhagic, respiratory distress, reproductive, persistent infection (PI), and mucosal disease (MD). Of 44 BVDV-positive samples, 33 were noncytopathic (ncp), 10 were cytopathic (cp), and one presented both ncp and cp biotypes. Sequencing analysis demonstrated that all samples belonged to BVDV-1a, BVDV-1b, or BVDV-2. The most common isolate was ncp BVDV-1b, (44%) followed by ncp BVDV-2a (24%). Among the six categories, respiratory clinical signs were the most common (36%) followed by PI (25%) and MD (16%)

    CHANG-ES VI: Probing Supernova Energy Deposition in Spiral Galaxies Through Multi-Wavelength Relationships

    Get PDF
    How a galaxy regulates its SNe energy into different interstellar/circumgalactic medium components strongly affects galaxy evolution. Based on the JVLA D-configuration C- (6 GHz) and L-band (1.6 GHz) continuum observations, we perform statistical analysis comparing multi-wavelength properties of the CHANG-ES galaxies. The high-quality JVLA data and edge-on orientation enable us for the first time to include the halo into the energy budget for a complete radio-flux-limited sample. We find tight correlations of LradioL_{\rm radio} with the mid-IR-based SFR. The normalization of our I1.6GHz/W Hz1SFRI_{\rm 1.6GHz}/{\rm W~Hz^{-1}}-{\rm SFR} relation is \sim2-3 times of those obtained for face-on galaxies, probably a result of enhanced IR extinction at high inclination. We also find tight correlations between LradioL_{\rm radio} and the SNe energy injection rate E˙SN(Ia+CC)\dot{E}_{\rm SN(Ia+CC)}, indicating the energy loss via synchrotron radio continuum accounts for 0.1%\sim0.1\% of E˙SN\dot{E}_{\rm SN}, comparable to the energy contained in CR electrons. The integrated C-to-L-band spectral index is α0.51.1\alpha\sim0.5-1.1 for non-AGN galaxies, indicating a dominance by the diffuse synchrotron component. The low-scatter LradioSFRL_{\rm radio}-{\rm SFR}/LradioE˙SN(Ia+CC)L_{\rm radio}-\dot{E}_{\rm SN (Ia+CC)} relationships have super-linear logarithmic slopes at 2 σ\sim2~\sigma in L-band (1.132±0.0671.132\pm0.067/1.175±0.1021.175\pm0.102) while consistent with linear in C-band (1.057±0.0751.057\pm0.075/1.100±0.1231.100\pm0.123). The super-linearity could be naturally reproduced with non-calorimeter models for galaxy disks. Using Chandra halo X-ray measurements, we find sub-linear LXLradioL_{\rm X}-L_{\rm radio} relations. These results indicate that the observed radio halo of a starburst galaxy is close to electron calorimeter, and a galaxy with higher SFR tends to distribute an increased fraction of SNe energy into radio emission (than X-ray).Comment: 16 pages, 6 figures, 1 table, MNRAS in pres

    Continuum Halos in Nearby Galaxies -- an EVLA Survey (CHANG-ES) -- I: Introduction to the Survey

    Full text link
    We introduce a new survey to map the radio continuum halos of a sample of 35 edge-on spiral galaxies at 1.5 GHz and 6 GHz in all polarization products. The survey is exploiting the new wide bandwidth capabilities of the Karl G. Jansky Very Large Array (i.e. the Expanded Very Large Array, or EVLA) in a variety of array configurations (B, C, and D) in order to compile the most comprehensive data set yet obtained for the study of radio halo properties. This is the first survey of radio halos to include all polarization products. In this first paper, we outline the scientific motivation of the survey, the specific science goals, and the expected improvements in noise levels and spatial coverage from the survey. Our goals include investigating the physical conditions and origin of halos, characterizing cosmic ray transport and wind speed, measuring Faraday rotation and mapping the magnetic field, probing the in-disk and extraplanar far-infrared - radio continuum relation, and reconciling non-thermal radio emission with high-energy gamma-ray models. The sample size allows us to search for correlations between radio halos and other properties, including environment, star formation rate, and the presence of AGNs. In a companion paper (Paper II) we outline the data reduction steps and present the first results of the survey for the galaxy, NGC 4631.Comment: 17 pages, 1 figure, accepted to the Astronomical Journal, Version 2 changes: added acknowledgement to NRA

    Exposure to Stress and Air Pollution from Bushfires during Pregnancy: Could Epigenetic Changes Explain Effects on the Offspring?

    Get PDF
    Due to climate change, bushfires are becoming a more frequent and more severe phenomenon which contributes to poor health effects associated with air pollution. In pregnancy, environmental exposures can have lifelong consequences for the fetus, but little is known about these consequences in the context of bushfire smoke exposure. In this review we summarise the current knowledge in this area, and propose a potential mechanism linking bushfire smoke exposure in utero to poor perinatal and respiratory outcomes in the offspring. Bushfire smoke exposure is associated with poor pregnancy outcomes including reduced birth weight and an increased risk of prematurity. Some publications have outlined the adverse health effects on young children, particularly in relation to emergency department presentations and hospital admissions for respiratory problems, but there are no studies in children who were exposed to bushfire smoke in utero. Prenatal stress is likely to occur as a result of catastrophic bushfire events, and stress is known to be associated with poor perinatal and respiratory outcomes. Changes to DNA methylation are potential epigenetic mechanisms linking both smoke particulate exposure and prenatal stress to poor childhood respiratory health outcomes. More research is needed in large pregnancy cohorts exposed to bushfire events to explore this further, and to design appropriate mitigation interventions, in this area of global public health importance.Vanessa Murphy is supported by an Investigator Grant from the Medical Research Future Fund (grant ID 1196252)

    Structural diversity of bacterial flagellar motors

    Get PDF
    The bacterial flagellum is one of nature’s most amazing and well-studied nanomachines. Its cell-wall-anchored motor uses chemical energy to rotate a microns-long filament and propel the bacterium towards nutrients and away from toxins. While much is known about flagellar motors from certain model organisms, their diversity across the bacterial kingdom is less well characterized, allowing the occasional misrepresentation of the motor as an invariant, ideal machine. Here, we present an electron cryotomographical survey of flagellar motor architectures throughout the Bacteria. While a conserved structural core was observed in all 11 bacteria imaged, surprisingly novel and divergent structures as well as different symmetries were observed surrounding the core. Correlating the motor structures with the presence and absence of particular motor genes in each organism suggested the locations of five proteins involved in the export apparatus including FliI, whose position below the C-ring was confirmed by imaging a deletion strain. The combination of conserved and specially-adapted structures seen here sheds light on how this complex protein nanomachine has evolved to meet the needs of different species

    The NR4A subgroup: immediate early response genes with pleiotropic physiological roles

    Get PDF
    The nuclear hormone receptor (NR) superfamily includes the orphan NR4A subgroup, comprised of Nur77 (NR4A1), Nurr1 (NR4A2) and NOR-1 (NR4A3). These NRs are classified as early response genes, are induced by a diverse range of signals, including fatty acids, stress, growth factors, cytokines, peptide hormones, phorbol esters, neurotransmitters, and physical stimuli (for example magnetic fields, shear stress). The ability to sense and rapidly respond to changes in the cellular environment thus appears to be a hallmark of this subfamily. The members of the NR4A subgroup are well conserved in the DNA binding domain (~91-95%) and the C-terminal ligand-binding domain (~60%), but are divergent in the N-terminal AB region. These receptors bind as monomers, homodimers and heterodimers with RXRs (to mediate retinoid signaling) to different permutations of the canonical NR binding motif. The NR4A subgroup activates gene expression in a constitutive ligand-independent manner. NR4A-mediated trans-activation (LBD) involves unusually active N-terminal AF-1 domains that mediate coactivator recruitment. Moreover, the NR4A receptors encode atypical LBDs and AF-2 domains. For example, the LBDs contain no cavity due to bulky hydrophobic residue side chains, and lack the classical coactivator-binding cleft constituted by helices 3, 4 and 12. However, a hydrophobic patch exists between helices 11 and 12, that encodes a novel cofactor interface that modulates transcriptional activity. In line with the pleiotropic physiological stimuli that induce the NR4A subgroup, these orphan NRs have been implicated in cell cycle regulation (and apoptosis), neurological disease, steroidogenesis, inflammation, carcinogenesis and atherogenesis

    Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice [preprint]

    Get PDF
    The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the pathogen’s ability to adapt to the heterogeneous immune response of the host. Understanding this interplay has proven difficult, largely because experimentally tractable small animal models do not recapitulate the heterogenous disease observed in natural infections. We leveraged the genetically diverse Collaborative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to associate bacterial genetic requirements with host genetics and immunity. We report that CC strains vary dramatically in their susceptibility to infection and represent reproducible models of qualitatively distinct immune states. Global analysis of Mtb mutant fitness across the CC panel revealed that a large fraction of the pathogen’s genome is necessary for adaptation to specific host microenvironments. Both immunological and bacterial traits were associated with genetic variants distributed across the mouse genome, elucidating the complex genetic landscape that underlies host-pathogen interactions in a diverse population
    corecore