research

CHANG-ES VI: Probing Supernova Energy Deposition in Spiral Galaxies Through Multi-Wavelength Relationships

Abstract

How a galaxy regulates its SNe energy into different interstellar/circumgalactic medium components strongly affects galaxy evolution. Based on the JVLA D-configuration C- (6 GHz) and L-band (1.6 GHz) continuum observations, we perform statistical analysis comparing multi-wavelength properties of the CHANG-ES galaxies. The high-quality JVLA data and edge-on orientation enable us for the first time to include the halo into the energy budget for a complete radio-flux-limited sample. We find tight correlations of LradioL_{\rm radio} with the mid-IR-based SFR. The normalization of our I1.6GHz/W Hz1SFRI_{\rm 1.6GHz}/{\rm W~Hz^{-1}}-{\rm SFR} relation is \sim2-3 times of those obtained for face-on galaxies, probably a result of enhanced IR extinction at high inclination. We also find tight correlations between LradioL_{\rm radio} and the SNe energy injection rate E˙SN(Ia+CC)\dot{E}_{\rm SN(Ia+CC)}, indicating the energy loss via synchrotron radio continuum accounts for 0.1%\sim0.1\% of E˙SN\dot{E}_{\rm SN}, comparable to the energy contained in CR electrons. The integrated C-to-L-band spectral index is α0.51.1\alpha\sim0.5-1.1 for non-AGN galaxies, indicating a dominance by the diffuse synchrotron component. The low-scatter LradioSFRL_{\rm radio}-{\rm SFR}/LradioE˙SN(Ia+CC)L_{\rm radio}-\dot{E}_{\rm SN (Ia+CC)} relationships have super-linear logarithmic slopes at 2 σ\sim2~\sigma in L-band (1.132±0.0671.132\pm0.067/1.175±0.1021.175\pm0.102) while consistent with linear in C-band (1.057±0.0751.057\pm0.075/1.100±0.1231.100\pm0.123). The super-linearity could be naturally reproduced with non-calorimeter models for galaxy disks. Using Chandra halo X-ray measurements, we find sub-linear LXLradioL_{\rm X}-L_{\rm radio} relations. These results indicate that the observed radio halo of a starburst galaxy is close to electron calorimeter, and a galaxy with higher SFR tends to distribute an increased fraction of SNe energy into radio emission (than X-ray).Comment: 16 pages, 6 figures, 1 table, MNRAS in pres

    Similar works