20 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Neoadjuvant chemoradiation (NACRT) and the prognostic effect of surgical margin (SM) status in pancreatic adenocarcinoma (PAC)

    No full text
    407 Background: Many studies have associated a R0 resection to have significantly improved survival compared with a R1 resection in PAC. Patients (pts) who undergo NACRT often go to surgery 4-8 weeks after the end of therapy, before the effects of NACRT can be fully manifested. The goal of this study is to evaluate if a positive SM (+SM) after NACRT has the same poor prognosis as a +SM after upfront surgery. Methods: After IRB approval, we retrospectively reviewed all cases of surgically resected PAC at a single institution from Dec 1996 to Jan 2014. Pts were stratified by receipt of NACRT as well as by SM status. We excluded pts treated with palliative intent, metastatic disease at presentation, death within 90 days of surgery, and biliary or ampullary tumors. The primary endpoint was overall survival (OS). We assessed the relationship between pt and tumor variables with treatment/margin combination using Chi-squared tests. OS was examined using Kaplan-Meier curves, and we tested association with treatment/margin using log-rank tests. Results: A total of 213 pts met inclusion criteria; 111 received upfront surgery (group I) with 94 (85%) receiving adjuvant chemotherapy or CRT and 102 received NACRT (group II) with either concurrent 5-fluorouracil (n=18) or gemcitabine (n=84). There were 31 pts with +SM in group I and 29 pts in group II. Pt demographics were balanced. There was more vessel involvement in group II (81%) at diagnosis than group I (11%) (p<0.01) with a trend towards improved OS in group II vs group I (p=0.09). Pathological evaluation revealed more PNI (61% vs 42%, p<0.01) and more lymph node positivity (71% vs 33%, p<0.01) in group I vs group II, respectively. Median OS for group I SM+/SM- and group II SM+/SM- were 15/25 months and 26/32 months respectively. OS is significantly improved with a negative SM (-SM) compared with a +SM (p<0.01). If the SM is positive, pts in group II had improved OS compared with group I (p=0.02). OS was not significantly different for group II +SM vs group I –SM (p=0.34). Conclusions: The negative impact of a +SM on survival is partially mitigated by NACRT. This data further supports the use of NACRT, although it is limited by its retrospective nature and small sample size

    Survival Impact of Increasing Time to Treatment Initiation for Patients With Head and Neck Cancer in the United States

    No full text
    PURPOSE: To estimate the overall survival (OS) impact from increasing time to treatment initiation (TTI) for patients with head and neck squamous cell carcinoma (HNSCC). METHODS: Using the National Cancer Data Base (NCDB), we examined patients who received curative therapy for the following sites: oral tongue, oropharynx, larynx, and hypopharynx. TTI was the number of days from diagnosis to initiation of curative treatment. The effect of TTI on OS was determined by using Cox regression models (MVA). Recursive partitioning analysis (RPA) identified TTI thresholds via conditional inference trees to estimate the greatest differences in OS on the basis of randomly selected training and validation sets, and repeated this 1,000 times to ensure robustness of TTI thresholds. RESULTS: A total of 51,655 patients were included. On MVA, TTI of 61 to 90 days versus less than 30 days (hazard ratio [HR], 1.13; 95% CI, 1.08 to 1.19) independently increased mortality risk. TTI of 67 days appeared as the optimal threshold on the training RPA, statistical significance was confirmed in the validation set (P < .001), and the 67-day TTI was the optimal threshold in 54% of repeated simulations. Overall, 96% of simulations validated two optimal TTI thresholds, with ranges of 46 to 52 days and 62 to 67 days. The median OS for TTI of 46 to 52 days or fewer versus 53 to 67 days versus greater than 67 days was 71.9 months (95% CI, 70.3 to 73.5 months) versus 61 months (95% CI, 57 to 66.1 months) versus 46.6 months (95% CI, 42.8 to 50.7 months), respectively (P < .001). In the most recent year with available data (2011), 25% of patients had TTI of greater than 46 days. CONCLUSION: TTI independently affects survival. One in four patients experienced treatment delay. TTI of greater than 46 to 52 days introduced an increased risk of death that was most consistently detrimental beyond 60 days. Prolonged TTI is currently affecting survival

    Contemporary trends in receipt of local therapy for men with clinically localized high-risk prostate cancer

    No full text
    111 Background: Level I evidence suggests local treatment results in improved survival as compared to androgen deprivation therapy (ADT) alone or watchful waiting for high risk prostate cancer (CaP), but contemporary trends in primary treatment for high risk CaP are poorly understood. Our aim is to examine local therapy utilization for patients with high risk CaP using a large national cancer registry. Methods: Using the National Cancer Database (NCDB), patients with clinically localized CaP meeting National Comprehensive Cancer Network high risk criteria were identified from 2004-2009. Men with node positive or metastatic disease were excluded. Adjusting for diagnosis year and demographic we examined the association between patient characteristics and local therapy, defined as radical prostatectomy (RP) or radiation (RT), in men with high risk CaP using logistic regression models. Results: A total of 132,369 men met inclusion criteria with 80% receiving local therapy and 12% receiving no treatment. There was a small but significant increase in local therapy utilization from 2004-2009 (79 to 81%, p70 years (OR 0.27, CI 0.23-0.30) or Charlson morbidity count > 2 (OR 0.43, CI 0.39-0.46) were less likely to receive local therapy. Further, men of African American race (OR 0.7, CI 0.67-0.74) and Medicare (OR 0.82, CI 0.77-0.87) or Medicaid (OR 0.6, 0.53-0.68) insurance were less likely to receive primary treatment than Caucasian patients or those with private insurance. Conclusions: In the NCDB, 80% of men presenting with clinically localized high risk CaP undergo local therapy as part of multimodality treatment or as monotherapy, with RP overtaking RT+ADT as the primary local treatment of choice. Furthermore, racial and insurance disparities in the receipt of primary treatment are still evident, providing targets for emerging CaP quality of care initiatives
    corecore