62 research outputs found

    Infant milk formula manufacture: process and compositional interactions in high dry matter wet-mixes

    Get PDF
    Infant milk formula (IMF) is fortified milk with composition based on the nutrient content in human mother's milk, 0 to 6 months postpartum. Extensive medical and clinical research has led to advances in the nutritional quality of infant formula; however, relatively few studies have focused on interactions between nutrients and the manufacturing process. The objective of this research was to investigate the impact of composition and processing parameters on physical behaviour of high dry matter (DM) IMF systems with a view to designing more sustainable manufacturing processes. The study showed that commercial IMF, with similar compositions, manufactured by different processes, had markedly different physical properties in dehydrated or reconstituted state. Commercial products made with hydrolysed protein were more heat stable compared to products made with intact protein, however, emulsion quality was compromised. Heat-induced denaturation of whey proteins resulted in increased viscosity of wet-mixes, an effect that was dependant on both whey concentration and interactions with lactose and caseins. Expanding on fundamental laboratory studies, a novel high velocity steam injection process was developed whereby high DM (60%) wet-mixes with lower denaturation/viscosity compared to conventional processes could be achieved; powders produced using this process were of similar quality to those manufactured conventionally. Hydrolysed proteins were also shown to be an effective way of reducing viscosity in heat-treated high DM wet-mixes. In particular, using a whey protein concentrate whereby ÎČ-Lactoglobulin was selectively hydrolysed, i.e., α-Lactalbumin remained intact, reduced viscosity of wet-mixes during processing while still providing good emulsification. The thesis provides new insights into interactions between nutrients and/or processing which influence physical stability of IMF both in concentrated liquid and powdered form. The outcomes of the work have applications in such areas as; increasing the DM content of spray drier feeds in order to save energy, and, controlling final powder quality

    Exploring the use of a modified high-temperature, short-time continuous heat exchanger with extended holding time (HTST-EHT) for thermal inactivation of trypsin following selective enzymatic hydrolysis of the ß- lactoglobulin fraction in whey protein isolate

    Get PDF
    peer-reviewedTryptic hydrolysis of whey protein isolate under specific incubation conditions including a relatively high enzyme:substrate (E:S) ratio of 1:10 is known to preferentially hydrolyse ß-lactoglobulin (ß-LG), while retaining the other major whey protein fraction, i.e., x-lactalbumin(x-LA) mainly intact. An objective of the present work was to explore the e ects of reducing E:S (1:10 1:30, 1:50, 1:100) on the selective hydrolysis of ß-LG by trypsin at pH 8.5 and 25 °C in a 5% (w/v) WPI solution during incubation periods ranging from 1 to 7 h. In addition, the use of a pilot-scale continuous high-temperature, short-time (HTST) heat exchanger with an extended holding time (EHT) of 5 min as a means of inactivating trypsin to terminate hydrolysis was compared with laboratory-based acidification to <pH 3 by the addition of HCl, and batch sample heating in a water bath at 85 °C. An E:S of 1:10 resulted in 100% and 30% of ßLG and x-LA hydrolysis, respectively, after 3 h, while an E:S reduction to 1:30 and 1:50 led >90% ß-LG hydrolysis after respective incubation periods of 4 and 6 h, with <5% hydrolysis of x-LA in the case of 1:50. Continuous HTST-EHT treatment was shown to be an e ective inactivation process allowing for the maintenance of substrate selectivity. However, HTST-EHT heating resulted in protein aggregation, which negatively impacts the downstream recovery of intact -LA. An optimum E:S was determined to be 1:50, with an incubation time ranging from 3 h to 7 h leading to 90% ß-LG hydrolysis and minimal degradation of x-LA. Alternative batch heating by means of a water bath to inactivate trypsin caused considerable digestion of x-LA, while acidification to <pH 3.0 restricted subsequent functional applications of the protein

    Pulse Spray Drying for Bovine Skimmed Milk Powder Production

    Get PDF
    Pulse Spray Drying (PSD) has potential as a sustainable means of skimmed milk powder (SMP) production. In this study, powders were obtained from PSD using different drying outlet temperatures (70, 80, 90 and 100 °C), and their characteristics were compared to those of traditional Spray Drying (SD). Native whey proteins were well preserved and Solubility Indexes were over 98% in all cases, despite powders obtained by PSD displaying lower solubility than the SD ones. No visual difference was observable in the powders (ΔE < 2); however, PSD powders were found to be yellower with a higher Browning Index. The drying technology did not have a significant effect on powder moisture content and bulk density. Particle size distribution and scanning electron microscopy images confirmed the presence of fine particles (<10 ÎŒm) in all samples that might have provided poor flowability and wetting behavior (overall Carr Index and Hausner ratio were 33.86 ± 3.25% and 1.52 ± 0.07, respectively). Higher amounts of agglomerated particles were found at low temperatures in the products processed with both technologies, but PSD samples showed a narrower particle size distribution and hollow particles with more wrinkles on the surface (probably due to the fast evaporation rate in PSD). Overall, PSD provided SMP with comparable physicochemical characteristics to SD and, once optimized at the industrial level, could offer significant advantages in terms of thermal efficiency without significant modification of the final product quality.This research was funded by the Horizon 2020 Framework Programme (PRIMA, grant number 1833, project Dairy Innovation for Mediterranean SME—DAINME-SME), and the CERCA Programme; and the APC was funded by the Horizon 2020 Framework Programme (PRIMA, grant number 1833; project Dairy Innovation for Mediterranean SME (DAINME-SME).info:eu-repo/semantics/publishedVersio

    Effect of pasteurisation and foaming temperature on the physicochemical and foaming properties of nano-filtered mineral acid whey

    Get PDF
    peer-reviewedFoaming can pose a major challenge during processing of acid whey (AW). In this study, nano-filtered mineral AW was collected from a commercial plant before (AW0) and after pasteurisation (AWpast; 75 °C, 15 s). Both AW samples were foamed at 21 °C and in addition, AWpast was foamed at 61 °C, corresponding to the temperature of in-plant foaming. Physicochemical, foaming, and surface properties of AW samples were compared. Foaming at 21 °C resulted in less pronounced foam characteristics for AWpast compared with AW0. Pasteurisation was found not to significantly affect physicochemical properties; however, interfacial kinetics during foaming were altered, which affected foaming behaviour. Foaming of AWpast at 61 °C produced more stable, “dry” foams. FTIR spectra confirmed the influence of protein unfolding at elevated temperatures on foaming, which was reversible upon cooling. This is significant as it gives processors a mean of controlling foaming through temperature control, where possible.Horizon 2020This research was performed under Marie Sklodowska-Curie Career-FIT Fellowship, Project Code MF20180049, organised by Enterprise Ireland. The project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No. 713654

    Influence of particle size on the physicochemical properties and stickiness of dairy powders

    Get PDF
    peer-reviewedThe compositional and physicochemical properties of different whey permeate (WPP), demineralised whey (DWP) and skim milk powder (SMP) size fractions were investigated. Bulk composition of WPP and DWP was significantly (P < 0.05) influenced by powder particle size; smaller particles had higher protein and lower lactose contents. Microscopic observations showed that WPP and DWP contained both larger lactose crystals and smaller amorphous particles. Bulk composition of SMP did not vary with particle size. Surface composition of the smallest SMP fraction (<75 ÎŒm) showed significantly lower protein (−9%) and higher fat (+5%) coverage compared with non-fractionated powders. For all powders, smaller particles were more susceptible to sticking. Hygroscopicity of SMP was not affected by particle size; hygroscopicity of semi-crystalline powders was inversely related to particle size. This study provides insights into differences between size fractions of dairy powders, which can potentially impact the sticking/caking behaviour of fine particles during processing.ACCEPTEDpeer-reviewe

    Prevalence of treatment-resistant hypertension after considering pseudo-resistance and morbidity: a cross-sectional study in Irish primary care

    Get PDF
    peer-reviewedBackground To confirm treatment-resistant hypertension (TRH), ambulatory blood pressure measurement (ABPM) must exclude white-coat hypertension (WCH), three or more medications should be prescribed at the optimal doses tolerated, and non-adherence and lifestyle should be examined. Most previous studies have not adequately considered pseudo-resistance and merely provide an apparent TRH (aTRH) prevalence figure. Aim To conduct a cross-sectional study of the prevalence of aTRH in general practice, and then consider pseudo-resistance and morbidity. Design and setting With support, 16 practices ran an anatomical therapeutic chemical (ATC) drug search, identifying patients on any possible hypertensive medications, and then a search of individual patients' electronic records took place. Method ABPM was used to rule out WCH. The World Health Organization-defined daily dosing guidelines determined adequate dosing. Adherence was defined as whether patients requested nine or more repeat monthly prescriptions within the past year. Results Sixteen practices participated (n = 50 172), and 646 patients had aTRH. Dosing was adequate in 19% of patients, 84% were adherent to medications, as defined by prescription refill, and 43% had ever had an ABPM. Using a BP cut-off of 140/90 mmHg, the prevalence of aTRH was 9% (95% confidence interval [CI] = 9.0 to 10.0). Consideration of pseudo-resistance further reduced prevalence rates to 3% (95% CI = 3.0 to 4.0). Conclusion Reviewing individual patient records results in a lower estimate of prevalence of TRH than has been previously reported. Further consideration for individual patients of pseudo-resistance additionally lowers these estimates, and may be all that is required for management in the vast majority of cases.PUBLISHEDpeer-reviewe

    Imaging in Vascular Access

    Get PDF
    This review examines four imaging modalities; ultrasound (US), digital subtraction angiography (DSA), magnetic resonance imaging (MRI) and computed tomography (CT), that have common or potential applications in vascular access (VA). The four modalities are reviewed under their primary uses, techniques, advantages and disadvantages, and future directions that are specific to VA. Currently, US is the most commonly used modality in VA because it is cheaper (relative to other modalities), accessible, non-ionising, and does not require the use of contrast agents. DSA is predominantly only performed when an intervention is indicated. MRI is limited by its cost and the time required for image acquisition that mainly confines it to the realm of research where high resolution is required. CT’s short acquisition times and high resolution make it useful as a problem-solving tool in complex cases, although accessibility can be an issue. All four imaging modalities have advantages and disadvantages that limit their use in this particular patient cohort. Current imaging in VA comprises an integrated approach with each modality providing particular uses dependent on their capabilities. MRI and CT, which currently have limited use, may have increasingly important future roles in complex cases where detailed analysis is required

    3D-imaging of Printed Nanostructured Networks using High-resolution FIB-SEM Nanotomography

    Full text link
    Networks of solution-processed nanomaterials are important for multiple applications in electronics, sensing and energy storage/generation. While it is known that network morphology plays a dominant role in determining the physical properties of printed networks, it remains difficult to quantify network structure. Here, we utilise FIB-SEM nanotomography to characterise the morphology of nanostructured networks. Nanometer-resolution 3D-images were obtained from printed networks of graphene nanosheets of various sizes, as well as networks of WS2 nanosheets, silver nanosheets and silver nanowires. Important morphological characteristics, including network porosity, tortuosity, pore dimensions and nanosheet orientation were extracted and linked to network resistivity. By extending this technique to interrogate the structure and interfaces within vertical printed heterostacks, we demonstrate the potential of this technique for device characterisation and optimisation.Comment: 6 figure

    Microbiota-related Changes in Bile Acid & Tryptophan Metabolism are Associated with Gastrointestinal Dysfunction in a Mouse Model of Autism

    Get PDF
    peer-reviewedAutism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental conditions worldwide. There is growing awareness that ASD is highly comorbid with gastrointestinal distress and altered intestinal microbiome, and that host-microbiome interactions may contribute to the disease symptoms. However, the paucity of knowledge on gut-brain axis signaling in autism constitutes an obstacle to the development of precision microbiota-based therapeutics in ASD. To this end, we explored the interactions between intestinal microbiota, gut physiology and social behavior in a BTBR T+ Itpr3tf/J mouse model of ASD. Here we show that a reduction in the relative abundance of very particular bacterial taxa in the BTBR gut – namely, bile-metabolizing Bifidobacterium and Blautia species, - is associated with deficient bile acid and tryptophan metabolism in the intestine, marked gastrointestinal dysfunction, as well as impaired social interactions in BTBR mice. Together these data support the concept of targeted manipulation of the gut microbiota for reversing gastrointestinal and behavioral symptomatology in ASD, and offer specific plausible targets in this endeavor.The APC Microbiome Institute is a research institute funded by Science Foundation Ireland (SFI) through the Irish Government's National Development Plan. J.F·C, T.G.D, C.S., S.A.J. and C.G.M.G. are supported by SFI (Grant Nos. SFI/12/RC/2273). S.A.J is also funded by SFI-EU 16/ERA-HDHL/3358. J.F·C, C.S. and T.G.D have research support from Mead Johnson, Cremo, 4D Pharma, Suntory Wellness, and Nutricia. J.F.C, C.S., T.G.D and G.C. have spoken at meetings sponsored by food and pharmaceutical companies

    In patients with severe uncontrolled asthma, does knowledge of adherence and inhaler technique using electronic monitoring improve clinical decision making? A protocol for a randomised controlled trial

    Get PDF
    Introduction: Many patients with asthma remain poorly controlled despite the use of inhaled corticosteroids and long-acting beta agonists. Poor control may arise from inadequate adherence, incorrect inhaler technique or because the condition is refractory. Without having an objective assessment of adherence, clinicians may inadvertently add extra medication instead of addressing adherence. This study aims to assess if incorporating objectively recorded adherence from the Inhaler Compliance Assessment (INCA) device and lung function into clinical decision making provides more cost-effective prescribing and improves outcomes. Methods and analysis: This prospective, randomised, multicentre study will compare the impact of using information on adherence to influence asthma treatment. Patients with severe uncontrolled asthma will be included. Data on adherence, inhaler technique and electronically recorded peak expiratory flow rate will be used to promote adherence and guide a clinical decision protocol to guide management in the active group. The control group will receive standard inhaler and adherence education. Medications will be adjusted using a protocol based on Global Initiativefor Asthma (GINA) recommendations. The primary outcome is the between-group difference in the proportion of patients who have refractory disease and are prescribed appropriate medications at the end of 32 weeks. A co-primary outcome is the difference between groups in the rate of adherence to salmeterol/fluticasone inhaler over the last 12 weeks. Secondary outcomes include changes in symptoms, lung function, type-2 cytokine biomarkers and clinical outcomes between both groups. Cost-effectiveness and cost-utility analyses of the INCA device intervention will be performed. The economic impact of a national implementation of the INCA-SUN programme will be evaluated. Ethics and dissemination:The results of the study will be published as a manuscript in peer-reviewed journals. The study has been approved by the ethics committees in the five participating hospitals. Trial registration NCT02307669; Pre-results
    • 

    corecore