375 research outputs found
Dynamics of non-convolution operators and holomorphy types
In this article we study the hypercyclic behavior of non-convolution operators defined on spaces of analytic functions of different holomorphy types over Banach spaces. The operators in the family we analyze are a composition of differentiation and composition operators, and are extensions of operators in H(C) studied by Aron and Markose in 2004. The dynamics of this class of operators, in the context of one and several complex variables, was further investigated by many authors. It turns out that the situation is somewhat different and that some purely infinite dimensional difficulties appear. For example, in contrast to the several complex variable case, it may happen that the symbol of the composition operator has no fixed points and still, the operator is not hypercyclic. We also prove a Runge type theorem for holomorphy types on Banach spaces.Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaFil: Savransky, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentin
Lo fantástico en la interpretación actual del mito de Orfeo y Eurídice de Dino Buzzati Poema a fumetti
El propósito de este artículo es estudiar la llamativa novela gráfica de Dino Buzzati (1906-1972), Poema a fumetti (1969), donde se trata un tema interesante en el ámbito de lo fantástico como es el del descenso a los infiernos, en una reescritura actual del mito clásico griego de Orfeo y Eurídice. Buzzati, maestro del fantástico en la literatura italiana, vierte el mito en cómic y lo impregna de la sexualidad y la angustia propias de la sensibilidad contemporánea.This paper studies Poema a fumetti, the striking graphic novel Dino Buzzati (1906-1972), published in 1969. This novel, which moves within the realms of the fantastic, is centered on the topic of the descent into hell, and thus it revisits the Greek myth of Orpheus and Eurydice. Buzatti, a master of the fantastic in Italian literature, distills the myth in comic and impregnates it with the sexuality and anguish of contemporary sensibility
On algebras of holomorphic functions of a given type
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem.Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Diffusion on a lattice: transition rates, interactions and memory effects
We analyze diffusion of particles on a two dimensional square lattice. Each
lattice site contains an arbitrary number of particles. Interactions affect
particles only in the same site, and are macroscopically represented by the
excess chemical potential. In a recent work, a general expression for
transition rates between neighboring cells as functions of the excess chemical
potential was derived. With transition rates, the mean field tracer
diffusivity, , is immediately obtained. The tracer diffusivity, , contains the correlation factor , representing memory
effects. An analysis of the joint probability of having given numbers of
particles at different sites when a force is applied to a tagged particle
allows an approximate expression for to be derived. The expression is
applied to soft core interaction (different values for the maximum number of
particles in a site are considered) and extended hard core
Hypercyclic homogeneous polynomials on H(C)
It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first example of a frequently hypercyclic homogeneous polynomial on any F-space. We prove that the homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related polynomials fail to be hypercyclic.Fil: Cardeccia, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentin
Arithmetic Progressions and Chaos in Linear Dynamics
We characterize chaotic linear operators on reflexive Banach spaces in terms of the existence of long arithmetic progressions in the sets of return times. We also show that this characterization does not hold for arbitrary Banach spaces. To achieve this, we study F-hypercyclicity for a family of subsets of the natural numbers associated to the existence of arbitrarily long arithmetic progressions.Fil: Cardeccia, Rodrigo Alejandro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentin
Pseudogenes as an alternative source of natural antisense transcripts
<p>Abstract</p> <p>Background</p> <p>Naturally occurring antisense transcripts (NATs) are non-coding RNAs that may regulate the activity of sense transcripts to which they bind because of complementarity. NATs that are not located in the gene they regulate (trans-NATs) have better chances to evolve than cis-NATs, which is evident when the sense strand of the cis-NAT is part of a protein coding gene. However, the generation of a trans-NAT requires the formation of a relatively large region of complementarity to the gene it regulates.</p> <p>Results</p> <p>Pseudogene formation may be one evolutionary mechanism that generates trans-NATs to the parental gene. For example, this could occur if the parental gene is regulated by a cis-NAT that is copied as a trans-NAT in the pseudogene. To support this we identified human pseudogenes with a trans-NAT to the parental gene in their antisense strand by analysis of the database of expressed sequence tags (ESTs). We found that the mutations that appeared in these trans-NATs after the pseudogene formation do not show the flat distribution that would be expected in a non functional transcript. Instead, we found higher similarity to the parental gene in a region nearby the 3' end of the trans-NATs.</p> <p>Conclusions</p> <p>Our results do not imply a functional relation of the trans-NAT arising from pseudogenes over their respective parental genes but add evidence for it and stress the importance of duplication mechanisms of genetic material in the generation of non-coding RNAs. We also provide a plausible explanation for the large transcripts that can be found in the antisense strand of some pseudogenes.</p
Orbits of homogeneous polynomials on Banach spaces
We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show a simple and natural example of a homogeneous polynomial with an orbit that is at the same time-dense (the orbit meets every ball of radius), weakly dense and such that is dense for every that either is unbounded or has 0 as an accumulation point. Moreover, we generalize the construction to arbitrary infinite-dimensional separable Banach spaces. To prove this, we study Julia sets of homogeneous polynomials on Banach spaces.Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentin
The visual binary AG Tri in Pictoris Association: can a debris disc cause very different rotation periods of its components?
We measure the photometric rotation periods of the components of multiple
systems in young stellar associations to investigate the causes of the observed
rotation period dispersion. We present the case of the wide binary AG Tri in
the 23-Myr young beta Pictoris Association consisting of K4 + M1 dwarfs. Our
multi-band, multi-season photometric monitoring allowed us to measure the
rotation periods of both components P_A = 12.4d and P_B = 4.66d, to detect a
prominent magnetic activity in the photosphere, likely responsible for the
measured radial velocity variations, and for the first time, a flare event on
the M1 component AG Tri B. We investigate either the possibility that the
faster rotating component may have suffered an enhanced primordial disc
dispersal, starting its PMS spin-up earlier than the slower rotating component,
or the possibility that the formation of a debris disc may have prevented AG
Tri A from gaining part of the angular momentum from the accreting disc.Comment: 28 pages, 7 figures, accepted for publication in Astrophysics and
Space Science 2015, (ASTR-D-15-00445R2
- …