918 research outputs found

    Two-center Interferences in Photoionization of Dissociating H2+_2^+ Molecule

    Get PDF
    We analyze two-center interference effects in the yields of ionization of a dissociating hydrogen molecular ion by an ultrashort VUV laser pulse. To this end, we performed numerical simulations of the time-dependent Schr\"odinger equation for a H2+_2^+ model ion interacting with two time-delayed laser pulses. The scenario considered corresponds to a pump-probe scheme, in which the first (pump) pulse excites the molecular ion to the first excited dissociative state and the second (probe) pulse ionizes the electron as the ion dissociates. The results of our numerical simulations for the ionization yield as a function of the time delay between the two pulses exhibit characteristic oscillations due to interferences between the partial electron waves emerging from the two protons in the dissociating hydrogen molecular ion. We show that the photon energy of the pump pulse should be in resonance with the σgσu\sigma_g - \sigma_u transition and the pump pulse duration should not exceed 5 fs in order to generate a well confined nuclear wavepacket. The spreading of the nuclear wavepacket during the dissociation is found to cause a decrease of the amplitudes of the oscillations as the time delay increases. We develop an analytical model to fit the oscillations and show how dynamic information about the nuclear wavepacket, namely velocity, mean internuclear distance and spreading, can be retrieved from the oscillations. The predictions of the analytical model are tested well against the results of our numerical simulations

    Stimuli‐Responsive Polymers for Engineered Emulsions

    Get PDF
    © 2024 The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Emulsions are complex. Dispersing two immiscible phases, thus expanding an interface, requires effort to achieve and the resultant dispersion is thermodynamically unstable, driving the system toward coalescence. Furthermore, physical instabilities, including creaming, arise due to presence of dispersed droplets of different densities to a continuous phase. Emulsions allow the formulation of oils, can act as vehicles to solubilize both hydrophilic and lipophilic molecules, and can be tailored to desirable rheological profiles, including “gel‐like” behavior and shear thinning. The usefulness of emulsions can be further expanded by imparting stimuli‐responsive or “smart” behaviors by inclusion of a stimuli‐responsive emulsifier, polymer or surfactant. This enables manipulation like gelation, breaking, or aggregation, by external triggers such as pH, temperature, or salt concentration changes. This platform generates functional materials for pharmaceuticals, cosmetics, oil recovery, and colloid engineering, combining both smart behaviors and intrinsic benefit of emulsions. However, with increased functionality comes greater complexity. This review focuses on the use of stimuli‐responsive polymers for the generation of smart emulsions, motivated by the great adaptability of polymers for this application and their efficacy as steric stabilizers. Stimuli‐responsive emulsions are described according to the trigger used to provide the reader with an overview of progress in this field.Peer reviewe

    Probing impulsive strain propagation with x-ray pulses

    Full text link
    Pump-probe time-resolved x-ray diffraction of allowed and nearly forbidden reflections in InSb is used to follow the propagation of a coherent acoustic pulse generated by ultrafast laser-excitation. The surface and bulk components of the strain could be simultaneously measured due to the large x-ray penetration depth. Comparison of the experimental data with dynamical diffraction simulations suggests that the conventional model for impulsively generated strain underestimates the partitioning of energy into coherent modes.Comment: 4 pages, 2 figures, LaTeX, eps. Accepted for publication in Phys. Rev. Lett. http://prl.aps.or

    Learning from learning algorithms: application to attosecond dynamics of high-harmonic generation

    Get PDF
    Includes bibliographical references (pages 043404-5).Using experiment and modeling, we show that the data set generated when a learning algorithm is used to optimize a quantum system can help to uncover the physics behind the process being optimized. In particular, by optimizing the process of high-harmonic generation using shaped light pulses, we generate a large data set and analyze its statistical behavior. This behavior is then compared with theoretical predictions, verifying our understanding of the attosecond dynamics of high-harmonic generation and uncovering an anomalous region of parameter space

    Combining branched copolymers with additives generates stable thermoresponsive emulsions with in situ gelation upon exposure to body temperature

    Get PDF
    Branched copolymer surfactants (BCS) containing thermoresponsive polymer components, hydrophilic components, and hydrophobic termini allow the formation of emulsions which switch from liquid at room temperature to a gel state upon heating. These materials have great potential as in situ gel-forming dosage forms for administration to external and internal body sites, where the emulsion system also allows effective solubilisation of a range of drugs with different chemistries. These systems have been reported previously, however there are many challenges to translation into pharmaceutical excipients. To transition towards this application, this manuscript describes the evaluation of a range of pharmaceutically-relevant oils in the BCS system as well as evaluation of surfactants and polymeric/oligomeric additives to enhance stability. Key endpoints for this study are macroscopic stability of the emulsions and rheological response to temperature. The effect of an optimal additive (methylcellulose) on the nanoscale processes occurring in the BCS-stabilised emulsions is probed by small-angle neutron scattering (SANS) to better comprehend the system. Overall, the study reports an optimal BCS/methylcellulose system exhibiting sol–gel transition at a physiologically-relevant temperature without macroscopic evidence of instability as an in situ gelling dosage form
    corecore