58 research outputs found

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Measurement of the J/ψ pair production cross-section in pp collisions at s=13 \sqrt{s}=13 TeV

    Get PDF
    The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 \sqrt{s}=13 TeV, corresponding to an integrated luminosity of 279 ±11 pb1^{−1}. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of J/ψJ/\psi pairs is measured using a data sample of pppp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13TeV\sqrt{s} = 13 \,{\mathrm{TeV}}, corresponding to an integrated luminosity of 279±11pb1279 \pm 11 \,{\mathrm{pb^{-1}}}. The measurement is performed for J/ψJ/\psi mesons with a transverse momentum of less than 10GeV/c10 \,{\mathrm{GeV}}/c in the rapidity range 2.0<y<4.52.0<y<4.5. The production cross-section is measured to be 15.2±1.0±0.9nb15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψJ/\psi pair are measured and compared to theoretical predictions

    Measurement of forward WeνW\to e\nu production in pppp collisions at s=8\sqrt{s}=8\,TeV

    Get PDF
    A measurement of the cross-section for WeνW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 22\,fb1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8\sqrt{s}=8\,TeV. The electrons are required to have more than 2020\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eνe\nu, are measured to be \begin{align*} \begin{split} \sigma_{W^{+} \to e^{+}\nu_{e}}&=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb},\\ \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}&=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{split} \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/WW^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{align*} \begin{split} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{split} \end{align*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for WeνW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 22\,fb1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8\sqrt{s}=8\,TeV. The electrons are required to have more than 2020\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eνe\nu, are measured to be \begin{equation*} \sigma_{W^{+} \to e^{+}\nu_{e}}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb}, \end{equation*} \begin{equation*} \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{equation*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/WW^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{equation*} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{equation*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W → eν production in pp collisions is presented using data corresponding to an integrated luminosity of 2 fb1^{−1} collected by the LHCb experiment at a centre-of-mass energy of s=8 \sqrt{s}=8 TeV. The electrons are required to have more than 20 GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive W production cross-sections, where the W decays to eν, are measured to be σW+e+νe=1124.4±2.1±21.5±11.2±13.0pb, {\sigma}_{W^{+}\to {e}^{+}{\nu}_e}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\kern0.5em \mathrm{p}\mathrm{b}, σWeνe=809.0±1.9±18.1±7.0±9.4pb, {\sigma}_{W^{-}\to {e}^{-}{\overline{\nu}}_e}=809.0\pm 1.9\pm 18.1\pm \kern0.5em 7.0\pm \kern0.5em 9.4\,\mathrm{p}\mathrm{b}, where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination

    Determinação do "status" nutricional de nitrogênio no feijoeiro utilizando imagens digitais coloridas

    Get PDF
    Este trabalho teve como objetivo avaliar o uso de índices espectrais, retirados de imagens digitais, para discriminar diferentes doses de N no feijoeiro. O trabalho, conduzido em vasos de 8 dm³, teve cinco tratamentos (0; 50; 100; 150 e 200 kg de N ha-1), com dez repetições. As imagens foram adquiridas aos 30; 40 e 50 dias após a emergência. Foram desenvolvidas funções discriminantes quadráticas, tendo como vetores de entrada as médias dos "pixels" de diferentes combinações dos quatro índices espectrais testados. Três diferentes tamanhos de blocos de imagem foram testados 9 x 9; 20 x 20 e 40 x 40 "pixels". Os melhores resultados foram alcançados pelos blocos de 9 x 9 e 20 x 20 "pixels", apresentando classificação 94; 96 e 96% superior à classificação ao acaso para os blocos 9 x 9 "pixels" e 92; 94 e 94% para os blocos 20x20 "pixels" aos 30; 40 e 50 dias após a emergência, respectivamente

    Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era

    No full text
    https://cds.cern.ch/record/224431

    Measurement of CP observables in B± → DK± and B± → Dπ± with two- and four-body D decays

    No full text

    Unterstützung expliziter Articulation Work : Interaktive Externalisierung und Abstimmung mentaler Modelle

    No full text
    Der Erfolg kooperativer Arbeit beruht auf einem gemeinsamen Verständnis der be- troffenen Abläufe durch die beteiligten Personen (Griffin und Hauser, 1992). Dieses gemeinsame Verständnis wird der Theorie von Strauss (1985) zufolge durch die stän- dige und unbewusste Durchführung von Tätigkeiten zur Abstimmung mit anderen Individuen erreicht. Beim Auftreten von Situationen, die von den Beteiligten als kom- plex und problematisch wahrgenommen werden, müssen nach Strauss bewusst dezi- dierte Aktivitäten der Abstimmung und zum Erreichen einer gemeinsamen Sichtweise durchgeführt werden. Sowohl die Identifikation der Notwendigkeit von Abstimmungs- aktivitäten als auch deren Durchführung werden maßgeblich von den individuellen Wahrnehmungen der beteiligten Personen beeinflusst (Grudin, 1988). Auf diesen As- pekt geht Strauss nicht ein, so dass auch Arbeiten, die sich bei der Entwicklung von Instrumenten der Unterstützung der Abstimmung auf dessen Arbeiten beziehen, die individuelle Dimension nicht explizit berücksichtigen. Ziel dieser Arbeit ist deshalb die Unterstützung der Abstimmungsprozesse über kooperative Arbeitsabläufe unter expli- ziter Berücksichtigung der Bedürfnisse der beteiligten Individuen. Zu diesem Zweck werden Methoden aus der Theorie der mentalen Modelle nach Johnson-Laird (1981) mit den Anforderungen aus der Abstimmung von Arbeitsabläufen zusammengeführt. Um die Abstimmung zu unterstützen, setzt der hier vorgestellte Ansatz die koopera- tive Bildung und Diskussion diagrammatischer Modelle ein. Dieser Zugang ist aus der Theorie der Bildung und Veränderung mentaler Modelle (Seel, 1991) abgeleitet. Die Externalisierung der mentalen Modelle in Form von diagrammatischen Modellen ist nach Seel ein Weg zur Reflexion und Kommunikation derselben und ermöglicht so die Entwicklung einer gemeinsamen Sichtweise auf den kooperativen Arbeitsablauf. Me- thodisch baut die Arbeit auf Sturkturlegetechniken und Concept Mapping auf, welche sich zur Externalisierung mentaler Modelle eignen (Ifenthaler, 2006). Die dort vorge- schlagenen Methoden werden unter Bezugnahme auf die Abstimmung von individuel- len Sichtweisen auf Arbeitsabläufe zusammengeführt. Wesentlich für die kooperative Anwendung ist deren Durchführung auf einer durch mehrere Personen gleichzeitig zugänglichen und manipulierbaren Modellierungsoberfläche (Dann, 1992). Die entwi- ckelte Methodik wird deshalb durch ein Tabletop Interface - eine horizontale Interak- tionsoberfläche mit rechnerbasierten Unterstützungsfunktionen - zu einem Instrument ergänzt, mit dem die Durchführung von Abstimmungsaktivitäten unterstützt werden kann. Das Tabletop Interface ermöglicht die kooperative Bildung von Modellen mittels physischen Bausteinen, die auf der Interaktionsoberfläche platziert werden. Das Mo- dell kann so unmittelbar und simultan von mehreren Personen erfasst und manipuliert werden. Technologisch basiert das System auf der Identifikation der Bausteine mittels Markern, die durch eine Kamera in Echtzeit erfasst werden. Die erfasste Information wird durch das System interpretiert, so dass Aktivitäten zur Modellbildung identifi- ziert werden können. Die Darstellung von Information zum erstellten Modell erfolgt durch Rückprojektion auf die Interaktionsoberfläche und einen Bildschirm, der als er- weiterter Ausgabekanal für nicht auf der Oberfläche darstellbare Information dient. Durch zusätzliche Rechnerunterstützung werden kooperationsunterstützende Maßnah- men wie die Wiederherstellung vergangener Modellzustände ermöglicht. Die persis- tente Ablage der erstellten Modelle erfolgt als Topic Map, einem standardisierten Datenformat zur flexiblen Repräsentation semantischer Netze, das eine Wieder- und Weiterverwendbarkeit der erstellten Modelle gewährleistet. Die Effektivität der Unterstützung von Abstimmungsaktivitäten durch das System wird im Rahmen einer empirischen Untersuchung untersucht. Dabei wird die Verwend- barkeit des interaktiven Systems selbst, dessen Nutzen bei der Abstimmung mentaler Modelle sowie letztendlich die Auswirkungen bei der Durchführung von Abstimmungs- aktivitäten in Arbeitsprozessen untersucht. Die Ergebnisse zeigen, dass das Werkzeug verständlich und benutzbar ist und das Instrument in seiner Gesamtheit sowohl posi- tive Wirkungen auf die Kooperation zwischen den beteiligten Personen hat als auch die Bildung einer gemeinsamen Sichtweise auf den betrachteten Arbeitsablauf hat.Successful cooperative work requires that the involved workers develop a common un- derstanding of the modalities of their interaction. According to Strauss (1985), com- mon understanding emerges from continuously and unconsciously conducted activities for alignment of understanding. In situation perceived to be complex or problematic by the involved persons, Strauss suggests that alignment activities have to triggered and conducted deliberately. Individual perceptions affect both, the identification of the need for alignment and alignment itself (Grudin, 1988). Strauss does not explicit- ly address this aspect in his theory. Approaches that support alignment based upon Strauss' work thus also largely ignore the individual, cognitive dimension of alignment. Accordingly, this work aims at extending the scope of alignment support by explicitly considering the perceptions and needs of individuals. The theory of mental models (Johnson-Laird, 1981) here is used to extend Strauss' concepts and develop effective support for developing a common understanding of work processes. Following the theory of mental model development by (Seel, 1991), the cooperative creation of diagrammatic models as representations of mental models can aid their alignment and the development of a common understanding. Suitable methods for building representations of mental models include structure elaboration techniques and concept mapping (Ifenthaler, 2006). Both methods have properties that are support the cooperative creation of models. In this work, they are integrated to form a method that is useable in the context of the alignment of cooperative work. The main feature for cooperation support is that modeling takes places on a simultaneously accessible and manipulable modeling surface (Dann, 1992). The method thus is complemented with a tabletop interface - a horizontally mounted interaction surface that is augmented with computer support - to effectively support the alignment of individual views on cooperative work processes. Tangible tokens are used to cooperatively build models on the interaction surface. By physically placing the tokens, the model can be manipulated simultaneously by several people. Token identification is based on visual markers that are tracked by a camera in real time. The gathered information is interpreted by the system to identify modeling activities. Model information is displayed by back-projecting it onto the surface from underneath. An traditional screen is provided as an additional output channel for information that cannot be displayed directly on the interaction surface. Cooperation is further supported by additional features like reconstruction support for former model states. Persistent model representation is based upon the standardized XML Topic Map format, which allows for a reusable, self-contained representation of generic semantic networks. The systems's effectiveness in supporting the alignment of work is tested in an empirical study. In three steps, the system's usability, its effects on the alignment of mental models and the effectiveness in supporting the development of a common understanding of work processes are examined. The results of the study show that the system is comprehensible and useable. Positive effects on both, the cooperation among people during modeling and the alignment of individual views of cooperative work, have been observed.von Stefan OpplAbweichender Titel laut Übersetzung der Verfasserin/des VerfassersZsfassung in engl. SpracheWien, Techn. Univ., Diss., 2010(VLID)161433

    Measurement of B0B^0, Bs0B^0_s, B+B^+ and Λb0\Lambda^0_b production asymmetries in 7 and 8 TeV proton-proton collisions

    No full text

    Measurement of the Bs0ightarrowJ/ψηB_{s}^{0} ightarrow J/\psi \eta lifetime

    No full text
    corecore