20 research outputs found

    Mortalidad de aves marinas producida por luces artificiales terrestres

    Get PDF
    Artificial lights at night cause high mortality of seabirds, one of the most endangered groups of birds globally. Fledglings of burrow-nesting seabirds, and to a lesser extent adults, are attracted to and then grounded (i.e., forced to land) by lights when they fly at night. We reviewed the current state of knowledge of seabird attraction to light to identify information gaps and propose measures to address the problem. Although species in families such as Alcidae and Anatidae can be grounded by artificial light, the most affected seabirds are petrels and shearwaters (Procellariiformes). At least 56 species of Procellariiformes, more than one-third of them (24) threatened, are subject to grounding by lights. Seabirds grounded by lights have been found worldwide, mainly on oceanic islands but also at some continental locations. Petrel breeding grounds confined to formerly uninhabited islands are particularly at risk from light pollution due to tourism and urban sprawl. Where it is impractical to ban external lights, rescue programs of grounded birds offer the most immediate and employed mitigation to reduce the rate of light-induced mortality and save thousands of birds every year. These programs also provide useful information for seabird management. However, these data are typically fragmentary, biased, and uncertain and can lead to inaccurate impact estimates and poor understanding of the phenomenon of seabird attraction to lights. We believe the most urgently needed actions to mitigate and understand light-induced mortality of seabirds are estimation of mortality and effects on populations; determination of threshold light levels and safe distances from light sources; documentation of the fate of rescued birds; improvement of rescue campaigns, particularly in terms of increasing recovery rates and level of care; and research on seabird-friendly lights to reduce attraction.RESUMEN: Las luces artificiales nocturnas causan una mortalidad alta de aves marinas, uno de los grupos de aves en mayor peligro de extinción a nivel mundial. Los polluelos de aves marinas que anidan en madrigueras, y en menor medida los adultos, son atraídos y forzados a aterrizar por las luces cuando vuelan de noche. Revisamos el estado actual del conocimiento sobre la atracción de las aves marinas por la luz para identificar vacíos de información y proponer medidas para resolver el problema. Aunque las especies de familias como Alcidae y Anatidae pueden ser forzadas a aterrizar por la luz artificial, las aves marinas más afectadas son los petreles y las pardelas (Procellariiformes). Por lo menos 56 especies de Procellariiformes, más de un tercio (24) de ellas amenazadas, son propensas al aterrizaje atraídas por las luces. Las aves marinas forzadas a aterrizar han sido halladas en todo el mundo, principalmente en islas oceánicas, pero también en algunas localidades continentales. Los sitios de anidación de los petreles confinados anteriormente a islas deshabitadas están particularmente en riesgo de sufrir contaminación lumínica debido al turismo y al crecimiento urbano. En donde no es práctico prohibir las luces externas, los programas de rescate de las aves accidentadas ofrecen la mitigación más inmediata y empleada para reducir la tasa de mortalidad inducida por la luz y salvar a miles de aves cada año. Estos programas también proporcionan información útil para el manejo de aves marinas. Sin embargo, estos datos están típicamente fragmentados, sesgados y son inciertos, y pueden llevar a estimaciones inexactas del impacto y a un entendimiento pobre del fenómeno de la atracción de las aves marinas por la luz. Creemos que las acciones necesarias de mayor urgencia para mitigar y entender la mortalidad de aves marinas producida por la luz son: la estimación de la mortalidad y los efectos sobre la población; la determinación de umbrales de niveles de luz y de distancias seguras a las fuentes de luz; el estudio del destino de las aves rescatadas; la mejora de las campañas de rescate, particularmente en términos de incrementar las tasas de recogida y el nivel de cuidado; y la investigación sobre las características de la luz para reducir la atracción de las aves marinas.This research was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (Project ID: 330655 FP7-PEOPLE-2012-IOF)info:eu-repo/semantics/publishedVersio

    Diversity and prevalence of zoonotic infections at the animal-human interface of primate trafficking in Peru

    Get PDF
    Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets

    Multi-lingual multi-platform investigations of online trade in jaguar parts.

    No full text
    We conducted research to understand online trade in jaguar parts and develop tools of utility for jaguars and other species. Our research took place to identify potential trade across 31 online platforms in Spanish, Portuguese, English, Dutch, French, Chinese, and Vietnamese. We identified 230 posts from between 2009 and 2019. We screened the images of animal parts shown in search results to verify if from jaguar; 71 posts on 12 different platforms in four languages were accompanied by images identified as definitely jaguar, including a total of 125 jaguar parts (50.7% posts in Spanish, 25.4% Portuguese, 22.5% Chinese and 1.4% French). Search effort varied among languages due to staff availability. Standardizing for effort across languages by dividing number of posts advertising jaguars by search time and number of individual searches completed via term/platform combinations changed the proportions the rankings of posts adjusted for effort were led by Portuguese, Chinese, and Spanish. Teeth were the most common part; 156 posts offered at least 367 teeth and from these, 95 were assessed as definitely jaguar; 71 of which could be linked to a location, with the majority offered for sale from Mexico, China, Bolivia, and Brazil (26.8, 25.4, 16.9, and 12.7% respectively). The second most traded item, skins and derivative items were only identified from Latin America: Brazil (7), followed by Peru (6), Bolivia (3), Mexico (2 and 1 skin piece), and Nicaragua and Venezuela (1 each). Whether by number of posts or pieces, the most commonly parts were: teeth, skins/pieces of skins, heads, and bodies. Our research took place within a longer-term project to assist law enforcement in host countries to better identify potential illegal trade and presents a snapshot of online jaguar trade and methods that also may have utility for many species traded online

    Model selection results for parasite richness among captive primates in Peru.

    No full text
    This table summarizes the generalized linear models (GLM) and generalized linear mixed effects models (GLMM) built to evaluate the contribution of population characteristics to parasite richness. Models ranked by Akaike’s information criterion with small-sample correction (AICc). Statistics include number of parameters (K), log-likelihood (−2LL), difference between AICc of each model and the best model (ΔAICc), and evidence ratio (wi/w1). Models listed under each heading are included in the 95% confidence set. (DOCX)</p

    Map of Peru showing the distribution of the study population by context and city.

    No full text
    Pie charts are proportional to the number of monkeys sampled in each city, whether at government-regulated captive facilities (Captivity, black), at households (Pet, light blue), or at markets (Trade, pink). Insert shows the location of Peru in South America. See Table 2 for further details.</p

    Factor loadings of the Principal Components (PC) Analysis.

    No full text
    This table shows the correlation of the different parasite genera with the main two principal components explaining the variation between parasite community composition across contexts for animal-human interaction and host genera of trafficked primates in Peru. (DOCX)</p

    Prevalence of enteric bacteria in captive monkeys found at each context for animal-human interaction in Peru.

    No full text
    Bar plot showing the proportion of monkeys with positive status for Aeromonas sp., Aeromonas caviae, Aeromonas sobria, Aeromonas hydrophila, Campylobacter sp., Campylobacter jejunii, Campylobacter coli, Plesiomonas shigelloides., Salmonella sp., Shigella boydii, Shigella flexneri, and Shigella sonnei across contexts. (TIF)</p
    corecore