40 research outputs found

    The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS

    Get PDF
    eIF4E binding protein (4E-BP) inhibits translation of capped mRNA by binding to the initiation factor eIF4E and is known to be mostly or completely unstructured in both free and bound states. Using small angle X-ray scattering (SAXS), we report here the analysis of 4E-BP structure in solution, which reveals that while 4E-BP is intrinsically disordered in the free state, it undergoes a dramatic compaction in the bound state. Our results demonstrate that 4E-BP and eIF4E form a ‘fuzzy complex’, challenging current visions of eIF4E/4E-BP complex regulation

    Alginates along the filament of the brown alga Ectocarpus help cells cope with stress

    Get PDF
    International audienceEctocarpus is a filamentous brown alga, which cell wall is composed mainly of alginates and fucans (80%), two non-crystalline polysaccharide classes. Alginates are linear chains of epimers of 1,4-linked uronic acids, ÎČ-d-mannuronic acid (M) and α-l-guluronic acid (G). Previous physico-chemical studies showed that G-rich alginate gels are stiffer than M-rich alginate gels when prepared in vitro with calcium. In order to assess the possible role of alginates in Ectocarpus, we first immunolocalised M-rich or G-rich alginates using specific monoclonal antibodies along the filament. As a second step, we calculated the tensile stress experienced by the cell wall along the filament, and varied it with hypertonic or hypotonic solutions. As a third step, we measured the stiffness of the cell along the filament, using cell deformation measurements and atomic force microscopy. Overlapping of the three sets of data allowed to show that alginates co-localise with the stiffest and most stressed areas of the filament, namely the dome of the apical cell and the shanks of the central round cells. In addition, no major distinction between M-rich and G-rich alginate spatial patterns could be observed. Altogether, these results support that both M-rich and G-rich alginates play similar roles in stiffening the cell wall where the tensile stress is high and exposes cells to bursting, and that these roles are independent from cell growth and differentiation

    Monoclonal antibodies directed to fucoidan preparations from brown algae

    Get PDF
    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance

    Expression, purification, crystallization and preliminary X-ray analysis of the polysaccharide lyase RB5312 from the marine planctomycete Rhodopirellula baltica

    No full text
    This study describes the crystallization and preliminary X-ray analysis of the family PL1 polysaccharide lyase RB5312 from the marine bacterium R. baltica. Purified recombinant protein was crystallized; the crystals belonged to space group P212121 and diffracted X-rays to a resolution of 1.8 Å

    Unraveling the multivalent binding of a marine family 6 carbohydrate-binding module with its native laminarin ligand

    No full text
    International audienceLaminarin is an abundant brown algal storage polysaccharide. Marine microorganisms, such as Zobellia galactanivorans, produce laminarinases for its degradation, which are important for the processing of this organic matter in the ocean carbon cycle. These laminarinases are often modular, as is the case with ZgLamC which has an N‐terminal GH16 module, a central family 6 carbohydrate‐binding module (CBM) and a C‐terminal PorSS module. To date, no studies have characterized a true marine laminarin‐binding CBM6 with its natural carbohydrate ligand. The crystal structure of ZgLamCCBM6 indicates that this CBM has two clefts for binding sugar (variable loop site, VLS; and concave face site, CFS). The ZgLamCCBM6 VLS binds in an exo‐manner and the CFS interacts in an endo‐manner with laminarin. Isothermal titration calorimetry (ITC) experiments on native and mutant ZgLamCCBM6 confirm that these binding sites have different modes of recognition for laminarin, in agreement with the ‘regional model’ postulated for CBM6‐binding modules. Based on ITC data and structural data, we propose a model of ZgLamCCBM6 interacting with different chains of laminarin in a multivalent manner, forming a complex cross‐linked protein–polysaccharide network

    Alpha-Agarases Define a New Family of Glycoside Hydrolases, Distinct from Beta-Agarase Families▿

    No full text
    The gene encoding the α-agarase from “Alteromonas agarilytica” (proposed name) has been cloned and sequenced. The gene product (154 kDa) is unrelated to ÎČ-agarases and instead belongs to a new family of glycoside hydrolases (GH96). The α-agarase also displays a complex modularity, with the presence of five thrombospondin type 3 repeats and three carbohydrate-binding modules
    corecore