112 research outputs found

    Entropic control of particle sizes during viral self-assembly

    Get PDF
    Morphologic diversity is observed across all families of viruses. Yet these supra-molecular assemblies are produced most of the time in a spontaneous way through complex molecular self-assembly scenarios. The modeling of these phenomena remains a challenging problem within the emerging field of Physical Virology. We present in this work a theoretical analysis aiming at highlighting the particular role of configuration entropy in the control of viral particle size distribution. Specializing this model to retroviruses like HIV-1, we predict a new mechanism of entropic control of both RNA uptake into the viral particle, and of the particle's size distribution. Evidence of this peculiar behavior has been recently reported experimentally

    Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production

    Get PDF
    In HIV-1 infected cells transcription of the integrated provirus generates the single full length 9 kb viral RNA, a major fraction of which is spliced to produce the single-spliced 4 kb RNAs and the multiple-spliced 2 kb RNAs. These spliced RNAs are the messengers for the Env glycoproteins and the viral regulatory factors. The cellular SR and hnRNP proteins were shown in vitro to control alternative splicing by binding cis-regulatory elements on the viral RNA. To better understand in vivo the role of the SR proteins on HIV-1 genomic RNA splicing and virion production, we used a human cell line expressing high levels of complete HIV-1 and either one of the ASF/SF2, SC35, and 9G8 SR proteins. Results show that over-expressing SR proteins caused a large reduction of genomic RNA and that each SR protein modified the viral 9 kb RNA splicing pattern in a specific mode. In fact, ASF/SF2 increased the level of Vpr RNA while SC35 and 9G8 caused a large increase in Tat RNA. As expected, overexpressing SR proteins caused a strong reduction of total Gag made. However, we observed by immuno-confocal microscopy an accumulation of Gag at the plasma membrane and in intracellular compartments while there is a dramatic reduction of Env protein made in most cells. Due to the negative impact of the SR proteins on the levels of genomic RNA and HIV-1 structural proteins much less virions were produced which retained part of their infectivity. In conclusion, SR proteins can down-regulate the late steps of HIV-1 replication

    Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production

    Get PDF
    In HIV-1 infected cells transcription of the integrated provirus generates the single full length 9 kb viral RNA, a major fraction of which is spliced to produce the single-spliced 4 kb RNAs and the multiple-spliced 2 kb RNAs. These spliced RNAs are the messengers for the Env glycoproteins and the viral regulatory factors. The cellular SR and hnRNP proteins were shown in vitro to control alternative splicing by binding cis-regulatory elements on the viral RNA. To better understand in vivo the role of the SR proteins on HIV-1 genomic RNA splicing and virion production, we used a human cell line expressing high levels of complete HIV-1 and either one of the ASF/SF2, SC35, and 9G8 SR proteins. Results show that over-expressing SR proteins caused a large reduction of genomic RNA and that each SR protein modified the viral 9 kb RNA splicing pattern in a specific mode. In fact, ASF/SF2 increased the level of Vpr RNA while SC35 and 9G8 caused a large increase in Tat RNA. As expected, overexpressing SR proteins caused a strong reduction of total Gag made. However, we observed by immuno-confocal microscopy an accumulation of Gag at the plasma membrane and in intracellular compartments while there is a dramatic reduction of Env protein made in most cells. Due to the negative impact of the SR proteins on the levels of genomic RNA and HIV-1 structural proteins much less virions were produced which retained part of their infectivity. In conclusion, SR proteins can down-regulate the late steps of HIV-1 replication

    RNA Control of HIV-1 Particle Size Polydispersity

    Get PDF
    HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy imaging and statistical analysis. This strategy allowed us to identify whether the presence of viral RNA acts as a modulator for VLPs and cores size heterogeneity in a large population of particles. These results are analyzed in the light of a recently proposed statistical physics model for the self-assembly process. In particular, our results reveal that the modulation of size distribution by the presence of viral RNA is qualitatively reproduced, suggesting therefore an entropic origin for the modulation of RNA uptake by the nascent VLP

    Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers

    Get PDF
    BACKGROUND: The HIV-1 nucleocapsid protein (NC) is formed of two CCHC zinc fingers flanked by highly basic regions. HIV-1 NC plays key roles in virus structure and replication via its nucleic acid binding and chaperoning properties. In fact, NC controls proviral DNA synthesis by reverse transcriptase (RT), gRNA dimerization and packaging, and virion assembly. RESULTS: We previously reported a role for the first NC zinc finger in virion structure and replication 1. To investigate the role of both NC zinc fingers in intracellular Gag trafficking, and in virion assembly, we generated series of NC zinc fingers mutations. Results show that all Zinc finger mutations have a negative impact on virion biogenesis and maturation and rendered defective the mutant viruses. The NC zinc finger mutations caused an intracellular accumulation of Gag, which was found either diffuse in the cytoplasm or at the plasma membrane but not associated with endosomal membranes as for wild type Gag. Evidences are also provided showing that the intracellular interactions between NC-mutated Gag and the gRNA were impaired. CONCLUSION: These results show that Gag oligomerization mediated by gRNA-NC interactions is required for correct Gag trafficking, and assembly in HIV-1 producing cells and the release of infectious viruses

    Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human immunodeficiency virus type 1 (HIV-1) encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy.</p> <p>Results</p> <p>Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization.</p> <p>Conclusion</p> <p>We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.</p

    Full assembly of HIV-1 particles requires assistance of the membrane curvature factor IRSp53

    Get PDF
    During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. siRNA-mediated knockdown of IRSp53 gene expression induces a decrease in viral particle production and a viral bud arrest at half completion. Single-molecule localization microscopy at the cell plasma membrane shows a preferential localization of IRSp53 around HIV-1 Gag assembly sites. In addition, we observe the presence of IRSp53 in purified HIV-1 particles. Finally, HIV-1 Gag protein preferentially localizes to curved membranes induced by IRSp53 I-BAR domain on giant unilamellar vesicles. Overall, our data reveal a strong interplay between IRSp53 I-BAR and Gag at membranes during virus assembly. This highlights IRSp53 as a crucial host factor in HIV-1 membrane curvature and its requirement for full HIV-1 particle assembly.Peer reviewe

    Uncles ex Machina: Familial Epiphany in Euripides' Electra

    Get PDF
    At the close of Euripides’ Electra, the Dioscuri suddenly appear ‘on high’ to their distraught niece and nephew, who have just killed their mother, the divine twins’ mortal sister. This is in fact the second longest extant deus ex machina (after the final scene in Hippolytus), and the only scene in which a tragedian attempts to resolve directly the aftermath of the matricide. In this article, I argue that Castor's and Polydeuces’ sudden apparition to Orestes and Electra constitutes a specialised point of intersection between the mortal and immortal realms in Greek tragedy: familial epiphany, an appearance by a god who has an especially intimate relationship with those on stage. Euripides’ focus on the familial divine as a category accentuates various contradictions inherent to both ancient Greek theology and dramaturgy. The Dioscuri are a living paradox, ambiguously traversing the space between dead heroes and gods, managing at the same time to occupy both. They oscillate uniquely between the mortal and immortal worlds, as different sources assign different fathers to each brother, and others speak of each one possessing divinity on alternate days. As I propose, the epiphany of these ambiguous brothers crystallises the problem of the gods’ physical presence in drama. Tragedy is the arena in which gods burst suddenly into the mortal realm, decisively and irrevocably altering human action. The physical divine thus tends to be both marginal and directorial, tasked with reining in the plot or directing its future course. The appearance of the familial divine, on the other hand, can in fact obscure the resolution and future direction of a play, undermining the authority of the tragic gods. In the specific case of Electra, I contend that the involvement of the Dioscuri, who are Electra's and Orestes’ maternal uncles, produces a sense of claustrophobia at the close of the play, which simultaneously denies the resolution that is expected from a deus ex machina while also revealing the pessimistic nature of what is typically considered a reassuringly ‘domestic’ and character driven drama
    • 

    corecore