50 research outputs found

    Efficient Evaluation of Partition Functions of Inhomogeneous Many-Body Spin Systems

    Get PDF
    We present a numerical method to evaluate partition functions and associated correlation functions of inhomogeneous 2D classical spin systems and 1D quantum spin systems. The method is scalable and has a controlled error. We illustrate the algorithm by calculating the finite-temperature properties of bosonic particles in 1D optical lattices, as realized in current experiments

    Classical and Quantum Simulations of Many-Body Systems

    Get PDF

    Matrix Product States, Projected Entangled Pair States, and variational renormalization group methods for quantum spin systems

    Get PDF
    This article reviews recent developments in the theoretical understanding and the numerical implementation of variational renormalization group methods using matrix product states and projected entangled pair states.Comment: Review from 200

    Variational study of hard-core bosons in a 2-D optical lattice using Projected Entangled Pair States (PEPS)

    Get PDF
    We have studied the system of hard-core bosons on a 2-D optical lattice using a variational algorithm based on projected entangled-pair states (PEPS). We have investigated the ground state properties of the system as well as the responses of the system to sudden changes in the parameters. We have compared our results to mean field results based on a Gutzwiller ansatz.Comment: 9 pages, 9 figure

    Tree tensor network state with variable tensor order: an efficient multireference method for strongly correlated systems

    Get PDF
    We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement

    Exploring frustrated spin systems using projected entangled pair states

    Get PDF
    We study the nature of the ground state of the frustrated J(1)-J(2) model and the J(1)-J(3) model using a variational algorithm based on projected entangled pair states. By investigating spin-spin correlation functions, we observe a separation in parameter regions with long- and short-range order. A direct comparison with exact diagonalizations in the subspace of short-range valence bond singlets reveals that the system is well described by states within this subset in the short-range order regions. We discuss the question whether the system forms a spin liquid, a plaquette valence bond crystal, or a columnar dimer crystal in these parameter regions

    Simulating strongly correlated quantum systems with tree tensor networks

    Get PDF
    We present a tree-tensor-network-based method to study strongly correlated systems with nonlocal interactions in higher dimensions. Although the momentum-space and quantum-chemistry versions of the density-matrix renormalization group (DMRG) method have long been applied to such systems, the spatial topology of DMRG-based methods allows efficient optimizations to be carried out with respect to one spatial dimension only. Extending the matrix-product-state picture, we formulate a more general approach by allowing the local sites to be coupled to more than two neighboring auxiliary subspaces. Following [Y. Shi, L. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006)], we treat a treelike network ansatz with arbitrary coordination number z, where the z=2 case corresponds to the one-dimensional (1D) scheme. For this ansatz, the long-range correlation deviates from the mean-field value polynomially with distance, in contrast to the matrix-product ansatz, which deviates exponentially. The computational cost of the tree-tensor-network method is significantly smaller than that of previous DMRG-based attempts, which renormalize several blocks into a single block. In addition, we investigate the effect of unitary transformations on the local basis states and present a method for optimizing such transformations. For the 1D interacting spinless fermion model, the optimized transformation interpolates smoothly between real space and momentum space. Calculations carried out on small quantum chemical systems support our approach

    Matrix product operator representations

    Get PDF
    We show how to construct relevant families of matrix product operators (MPOs) in one and higher dimensions. These form the building blocks for the numerical simulation methods based on matrix product states and projected entangled pair states. In particular, we construct translationally invariant MPOs suitable for time evolution, and show how such descriptions are possible for Hamiltonians with long-range interactions. We show how these tools can be exploited for constructing new algorithms for simulating quantum spin systems
    corecore