47 research outputs found

    Quantitative Analysis of the MGMT Methylation Status of Glioblastomas in Light of the 2021 WHO Classification.

    Get PDF
    Glioblastomas with methylation of the promoter region of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene exhibit increased sensitivity to alkylating chemotherapy. Quantitative assessment of the MGMT promoter methylation status might provide additional prognostic information. The aim of our study was to determine a quantitative methylation threshold for better survival among patients with glioblastomas. We included consecutive patients ≄18 years treated at our department between 11/2010 and 08/2018 for a glioblastoma, IDH wildtype, undergoing quantitative MGMT promoter methylation analysis. The primary endpoint was overall survival. A total of 321 patients were included. Median overall survival was 12.6 months. Kaplan-Meier and adjusted Cox regression analysis showed better survival for the groups with 16-30%, 31-60%, and 61-100% methylation. In contrast, survival in the group with 1-15% methylation was similar to those with unmethylated promoter regions. A secondary analysis confirmed this threshold. Better survival is observed in patients with glioblastomas with ≄16% methylation of the MGMT promoter region than with <16% methylation. Survival with tumors with 1-15% methylation is similar to with unmethylated tumors. Above 16% methylation, we found no additional benefit with increasing methylation

    Non-Equilibrium Magnetization in a Ballistic Quantum Dot

    Full text link
    We show that Aharonov-Bohm (AB) oscillations in the magnetic moment of an integrable ballistic quantum dot can be destroyed by a time dependent magnetic flux. The effect is due to a nonequilibrium population of perfectly coherent electronic states. For real ballistic systems the equilibrization process, which involves a special type of inelastic electron backscattering, can be so ineffective, that AB oscillations are suppressed when the flux varies with frequency ω∌\omega\sim 107^7-108^8 s−1^{-1}. The effect can be used to measure relaxation times for inelastic backscattering.Comment: 11 pages LaTeX v3.14 with RevTeX v3.0, 3 post script figures available on request, APR 93-X2

    Temporally divergent regulatory mechanisms govern neuronal diversification and maturation in the mouse and marmoset neocortex

    Get PDF
    Mammalian neocortical neurons span one of the most diverse cell type spectra of any tissue. Cortical neurons are born during embryonic development, and their maturation extends into postnatal life. The regulatory strategies underlying progressive neuronal development and maturation remain unclear. Here we present an integrated single-cell epigenomic and transcriptional analysis of individual mouse and marmoset cortical neuron classes, spanning both early postmitotic stages of identity acquisition and later stages of neuronal plasticity and circuit integration. We found that, in both species, the regulatory strategies controlling early and late stages of pan-neuronal development diverge. Early postmitotic neurons use more widely shared and evolutionarily conserved molecular regulatory programs. In contrast, programs active during later neuronal maturation are more brain- and neuron-specific and more evolutionarily divergent. Our work uncovers a temporal shift in regulatory choices during neuronal diversification and maturation in both mice and marmosets, which likely reflects unique evolutionary constraints on distinct events of neuronal development in the neocortex. The mechanisms underlying neuron specification and maturation are unclear. Here the authors provide an integrated epigenomic and transcriptomic analysis of mouse and marmoset neocortical neuronal classes. Pan-neuronal programs active during early development are more evolutionary conserved but not neuron-specific, whereas pan-neuronal programs active during later stages of maturation are more neuron- and species-specific

    Automatische Erkennung von Shuntventilen anhand von Röntgenbildern mit Hilfe von Deep Learning

    No full text

    Optimal Combinations of Chemotherapy and Radiotherapy in Low-Grade Gliomas: A Mathematical Approach.

    Get PDF
    Low-grade gliomas (LGGs) are brain tumors characterized by their slow growth and infiltrative nature. Treatment options for these tumors are surgery, radiation therapy and chemotherapy. The optimal use of radiation therapy and chemotherapy is still under study. In this paper, we construct a mathematical model of LGG response to combinations of chemotherapy, specifically to the alkylating agent temozolomide and radiation therapy. Patient-specific parameters were obtained from longitudinal imaging data of the response of real LGG patients. Computer simulations showed that concurrent cycles of radiation therapy and temozolomide could provide the best therapeutic efficacy in-silico for the patients included in the study. The patient cohort was extended computationally to a set of 3000 virtual patients. This virtual cohort was subject to an in-silico trial in which matching the doses of radiotherapy to those of temozolomide in the first five days of each cycle improved overall survival over concomitant radio-chemotherapy according to RTOG 0424. Thus, the proposed treatment schedule could be investigated in a clinical setting to improve combination treatments in LGGs with substantial survival benefits

    Exploring Novel Funding Strategies for Innovative Medical Research: The HORAO Crowdfunding Campaign.

    Get PDF
    BACKGROUND The rise of the internet and social media has boosted online crowdfunding as a novel strategy to raise funds for kick-starting projects, but it is rarely used in science. OBJECTIVE We report on an online crowdfunding campaign launched in the context of the neuroscience project HORAO. The aim of HORAO was to develop a noninvasive real-time method to visualize neuronal fiber tracts during brain surgery in order to better delineate tumors and to identify crucial cerebral landmarks. The revenue from the crowdfunding campaign was to be used to sponsor a crowdsourcing campaign for the HORAO project. METHODS We ran a 7-week reward-based crowdfunding campaign on a national crowdfunding platform, offering optional material and experiential rewards in return for a contribution toward raising our target of Swiss francs (CHF) 50,000 in financial support (roughly equivalent to US $50,000 at the time of the campaign). We used various owned media (websites and social media), as well as earned media (press releases and news articles) to raise awareness about our project. RESULTS The production of an explanatory video took 60 hours, and 31 posts were published on social media (Facebook, Instagram, and Twitter). The campaign raised a total of CHF 69,109. Approximately half of all donations came from donors who forwent a reward (CHF 28,786, 48.74%); the other half came from donors who chose experiential and material rewards in similar proportions (CHF 14,958, 25.33% and CHF 15,315.69, 25.93%, respectively). Of those with an identifiable relationship to the crowdfunding team, patients and their relatives contributed the largest sum (CHF 17,820, 30.17%), followed by friends and family (CHF 9288, 15.73%) and work colleagues (CHF 6028, 10.21%), while 43.89% of funds came from donors who were either anonymous or had an unknown relationship to the crowdfunding team. Patients and their relatives made the largest donations, with a median value of CHF 200 (IQR 90). CONCLUSIONS Crowdfunding proved to be a successful strategy to fund a neuroscience project and to raise awareness of a specific clinical problem. Focusing on potential donors with a personal interest in the issue, such as patients and their relatives in our project, is likely to increase funding success. Compared with traditional grant applications, new skills are needed to explain medical challenges to the crowd through video messages and social media
    corecore