500 research outputs found

    Alien Registration- Murchison, Helen B. (Presque Isle, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/33680/thumbnail.jp

    Fluctuation history of Great Salt Lake, Utah, during the last 13,000 years, part 2

    Get PDF
    Great Salt Lake level fluctuations from 13,000 yr B.P. to the present were interpreted by examination of shoreline geomorphic features, shoreline deposits, archeologic sites, isotopic data, and palynologic data. After the conclusion of the Bonneville paleolake cycle, between 13,000 and 12,000 yr B.P. the lake regressed to levels low enough to deposit a littoral oxidized red bed stratum and a pelagic Glauber's salt layer. A late Pleistocene lake cycle occurred between 12,000 and 10,000 yr B.P. depositing several beaches, the highest reaching an altitude of about 4250 ft (1295.3 m). The lake regressed after 10,000 yr B.P., only to rise to 4230 ft (1289.2 m) between 9700 and 9400 yr B.P. and then gradually lower at least 15 ft (4.5 m) or more. Lake levels fluctuated between 4212 and 4180 ft (1284 and 1274 m) for the next 4000 years. A late Holocene lake cycle, constrained by radiocarbon ages between 3440 and 1400 yr B.P., is reported at a highest static level of 4221 ft (1286.5 m). After a lake level drop to altitudes ranging between 4210 and 4205 ft (1283.2 and 1281.6 m), a 4217 ft (1285.7 m) level was reached after 400 yr B.P. This level lowered to 4214 ft (1284.4 m) in the mid to late 1700 s A.D. The lake levels have since stabilized aroung a 4200 ft (1280 m) mean

    Impact of an entrustable professional activities-based assessment system

    Get PDF
    Background: Beginning in 2014, all Accreditation Counsel of Graduate Medical Education (ACGME) accredited residency programs were required to move to a Milestones-based system for biannual resident assessment. The resident assessment system for the Virginia Tech-Carilion Obstetrics and Gynecology (OB/GYN) residency program was re-designed to meet this requirement in July, 2014. The ACGME Milestones based assessment tool was identified on multiple faculty surveys as an area for improvement. To address this issue, an entrustable professional activities (EPA) based assessment system was designed and implemented for assessment of all OB/GYN rotations. Objective: To evaluate the impact of an EPA based resident assessment system on faculty member’s evaluation of resident assessment tools. Methods: In this prospective quality improvement study, a survey was sent to all faculty members prior to the implementation of the EPA-based assessment system. The same survey was performed three months after the implementation of the new system. To facilitate analysis, each level of agreement was assigned a numerical value (1-5). The results were aggregated, and were analyzed using t-tests, assuming unequal variances. Results: Sixty-eight percent of the faculty responded to the first survey, and 67% responded to the follow up survey. Statistically significant (p<.05) improvements were noted in most measures of the EPA based assessment tool including “ease of use” (2.2 vs 4.4, p< 0.001) and “accurate representation of resident performance” (2.5 vs 3.9, p <0.001). Conclusion: An EPA based resident evaluation system significantly improved teaching faculty’s impression of most domains of our OB/GYN resident assessment tools

    A MicroRNA feedback circuit in midbrain dopamine neurons

    Get PDF
    MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non-protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in midbrain DNs and is deficient in midbrain tissue from patients with Parkinson's disease. miR-133b regulates the maturation and function of midbrain DNs within a negative feedback circuit that includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion

    miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex

    Get PDF
    Neurogenesis during the development of the mammalian cerebral cortex involves a switch of neural stem and progenitor cells from proliferation to differentiation. To explore the possible role of microRNAs (miRNAs) in this process, we conditionally ablated Dicer in the developing mouse neocortex using Emx1-Cre, which is specifically expressed in the dorsal telencephalon as early as embryonic day (E) 9.5. Dicer ablation in neuroepithelial cells, which are the primary neural stem and progenitor cells, and in the neurons derived from them, was evident from E10.5 onwards, as ascertained by the depletion of the normally abundant miRNAs miR-9 and miR-124. Dicer ablation resulted in massive hypotrophy of the postnatal cortex and death of the mice shortly after weaning. Analysis of the cytoarchitecture of the Dicer-ablated cortex revealed a marked reduction in radial thickness starting at E13.5, and defective cortical layering postnatally. Whereas the former was due to neuronal apoptosis starting at E12.5, which was the earliest detectable phenotype, the latter reflected dramatic impairment of neuronal differentiation. Remarkably, the primary target cells of Dicer ablation, the neuroepithelial cells, and the neurogenic progenitors derived from them, were unaffected by miRNA depletion with regard to cell cycle progression, cell division, differentiation and viability during the early stage of neurogenesis, and only underwent apoptosis starting at E14.5. Our results support the emerging concept that progenitors are less dependent on miRNAs than their differentiated progeny, and raise interesting perspectives as to the expansion of somatic stem cells

    Aperture, A Large Telescope Using Magnetostriction For Post Deployment Corrections: Final Technical Report of NASA Innovative Advanced Concepts (NIAC) Phase I

    Get PDF
    In summary, astronomical as well as Earth observing applications of the future are counting on larger aperture telescopes than are currently available. Several groups have been working on the topic of enabling large (about 16-m diameter) UV-Vis telescopes for many years. The unique feature of our concept is that magnetic films are used rather than electrostatic films or piezo-electrostatic pads. Our magnetic film concept allows for contiguous correction along the surface, does not require a hard wire connection, and does not require continuous external application of the field. There are many unknowns related to the initial accuracy of the deployed figure prior to the magnetic write head corrections. The length scale over which the corrections need to be applied is also of concern. For, although approximately mm length scale corrections can be made with the MSM plus write head technology, the number of 1 mm patches in a 16 m diameter mirror is too large to contemplate applying individual corrections to each individual patch. However, deployment strategies and the materials available continue to evolve, in particular shape memory composites (SMCs) [34] or alloys (SMAs) [41], such that at this time we see no show-stoppers for this concept. Furthermore, the ability to tune deformations down to much (factors of 10-100) smaller (m) scale opens the futuristic possibility of improving the figure well beyond Strehl values of 90%

    Short RNA Guides Cleavage by Eukaryotic RNase III

    Get PDF
    In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response

    ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence

    Get PDF
    Background: The possibilities offered by next generation sequencing (NGS) platforms are revolutionizing biotechnological laboratories. Moreover, the combination of NGS sequencing and affordable high-throughput genotyping technologies is facilitating the rapid discovery and use of SNPs in non-model species. However, this abundance of sequences and polymorphisms creates new software needs. To fulfill these needs, we have developed a powerful, yet easy-to-use application. Results: The ngs_backbone software is a parallel pipeline capable of analyzing Sanger, 454, Illumina and SOLiD (Sequencing by Oligonucleotide Ligation and Detection) sequence reads. Its main supported analyses are: read cleaning, transcriptome assembly and annotation, read mapping and single nucleotide polymorphism (SNP) calling and selection. In order to build a truly useful tool, the software development was paired with a laboratory experiment. All public tomato Sanger EST reads plus 14.2 million Illumina reads were employed to test the tool and predict polymorphism in tomato. The cleaned reads were mapped to the SGN tomato transcriptome obtaining a coverage of 4.2 for Sanger and 8.5 for Illumina. 23,360 single nucleotide variations (SNVs) were predicted. A total of 76 SNVs were experimentally validated, and 85% were found to be real. Conclusions: ngs_backbone is a new software package capable of analyzing sequences produced by NGS technologies and predicting SNVs with great accuracy. In our tomato example, we created a highly polymorphic collection of SNVs that will be a useful resource for tomato researchers and breeders. The software developed along with its documentation is freely available under the AGPL license and can be downloaded from http://bioinf. comav.upv.es/ngs_backbone/ or http://github.com/JoseBlanca/franklin.Blanca Postigo, JM.; Pascual Bañuls, L.; Ziarsolo Areitioaurtena, P.; Nuez Viñals, F.; Cañizares Sales, J. (2011). Ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence. BMC Genomics. 12:1-8. doi:10.1186/1471-2164-12-285S1812Metzker ML: Sequencing technologies - the next generation. Nature Reviews Genetics. 2010, 11 (1): 31-46. 10.1038/nrg2626.454 sequencing. [ http://www.454.com/ ]Illumina Inc. [ http://www.illumina.com/ ]Flicek P, Birney E: Sense from sequence reads: methods for alignment and assembly (vol 6, pg S6, 2009). Nature Methods. 2010, 7 (6): 479-479.Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WEG, Wetter T, Suhai S: Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Research. 2004, 14 (6): 1147-1159. 10.1101/gr.1917404.Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009, 25 (14): 1754-1760. 10.1093/bioinformatics/btp324.Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology. 2009, 10 (3):Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data P: The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009, 25 (16): 2078-2079. 10.1093/bioinformatics/btp352.1000 Genomes. A deep Catalog of Human Genetic Variation. [ http://1000genomes.org/wiki/doku.php?id=1000_genomes:analysis:vcf4.0 ]The seqanswers internet forum. [ http://seqanswers.com/ ]Blankenberg D, Taylor J, Schenck I, He JB, Zhang Y, Ghent M, Veeraraghavan N, Albert I, Miller W, Makova KD, Ross CH, Nekrutenko A: A framework for collaborative analysis of ENCODE data: Making large-scale analyses biologist-friendly. Genome Research. 2007, 17 (6): 960-964. 10.1101/gr.5578007.CloVR Automated Sequence Analysis from Your Desktop. [ http://clovr.org/ ]Papanicolaou A, Stierli R, Ffrench-Constant RH, Heckel DG: Next generation transcriptomes for next generation genomes using est2assembly. Bmc Bioinformatics. 2009, 10:Applied Biosystems by life technologies. [ http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing.html ]Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang HY, Landherr L, Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman N, dePamphilis CW: Comparison of next generation sequencing technologies for transcriptome characterization. Bmc Genomics. 2009, 10:Murchison EP, Tovar C, Hsu A, Bender HS, Kheradpour P, Rebbeck CA, Obendorf D, Conlan C, Bahlo M, Blizzard CA, Pyecroft S, Kreiss A, Kellis M, Stark A, Harkins TT, Marshall Graves JA, Woods GM, Hanon GJ, Papenfuss AT: The Tasmanian Devil Transcriptome Reveals Schwann Cell Origins of a Clonally Transmissible Cancer. Science. 2010, 327 (5961): 84-87. 10.1126/science.1180616.Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA: Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. Bmc Genomics. 2010, 11:Babik W, Stuglik M, Qi W, Kuenzli M, Kuduk K, Koteja P, Radwan J: Heart transcriptome of the bank vole (Myodes glareolus): towards understanding the evolutionary variation in metabolic rate. BMC Genomics. 2010, 11: 390-10.1186/1471-2164-11-390.Miller JC, Tanksley SD: RFLP analysis of phylogenetic-relationships and genetic-variation in the genus Lycopersicon. Theoretical and Applied Genetics. 1990, 80 (4): 437-448.Williams CE, Stclair DA: Phenetic relationships and levels of variability detected by restriction-fragment-length-polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon-esculentum. Genome. 1993, 36 (3): 619-630. 10.1139/g93-083.Rick CM: Tomato, Lycopersicon esculentum (Solanaceae). Evolution of crop plants. Edited by: Simmonds NW. 1976, London: Longman Group, 268-273.Labate JA, Baldo AM: Tomato SNP discovery by EST mining and resequencing. Molecular Breeding. 2005, 16 (4): 343-349. 10.1007/s11032-005-1911-5.Yano K, Watanabe M, Yamamoto N, Maeda F, Tsugane T, Shibata D: Expressed sequence tags (EST) database of a miniature tomato cultivar, Micro-Tom. Plant and Cell Physiology. 2005, 46: S139-S139.Jimenez-Gomez JM, Maloof JN: Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. Bmc Plant Biology. 2009, 9:Yang WC, Bai XD, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D: Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Molecular Breeding. 2004, 14 (1): 21-34.Van Deynze A, Stoffel K, Buell CR, Kozik A, Liu J, van der Knaap E, Francis D: Diversity in conserved genes in tomato. Bmc Genomics. 2007, 8:Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM: Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. Bmc Genomics. 2009, 10:Bioinformatics at COMAV. [ http://bioinf.comav.upv.es/ngs_backbone/index.html ]Broad institute. [ http://www.broadinstitute.org/igv ]Bioinformatics at COMAV. [ http://bioinf.comav.upv.es/ngs_backbone/install.html ]Github social coding. [ http://github.com/JoseBlanca/franklin ]Chou HH, Holmes MH: DNA sequence quality trimming and vector removal. Bioinformatics. 2001, 17 (12): 1093-1104. 10.1093/bioinformatics/17.12.1093.Picard. [ http://picard.sourceforge.net/index.shtml ]McKenna A, Hanna M, Banks E, Sivachenko A, Citulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research. 2010, 20: 1297-1303. 10.1101/gr.107524.110.Sol Genomics Network. [ ftp://ftp.solgenomics.net/ ]NCBI Genbank. [ http://www.ncbi.nlm.nih.gov/genbank/ ]Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT: Amplicon melting analysis with labeled primers: A closed-tube method for differentiating homozygotes and heterozygotes. Clinical Chemistry. 2003, 49 (3): 396-406. 10.1373/49.3.396
    corecore