104 research outputs found

    Genetics polymorphism of poplars from Moscow region based on high-throughput sequencing of ITS

    Get PDF
    Poplars are widely used in landscaping of Moscow due to the ability to effectively purify the air from harmful impurities and to release a large amount of oxygen. The genus Populus is characterized by a high level of intraspecies polymorphism, as well as the presence of natural interspecies hybrids. The aim of our work was to evaluate the genetic diversity of poplars, which are growing on the territory of Moscow city by high-throughput sequencing of internal transcribed spacers of 45S rRNA genes (ITS sequences). Sequencing of ITS of 40 poplar plants was performed on Illumina platform (MiSeq) and about 3 000 reads were obtained for each sample in average. Bioinformatics analysis was performed using CLC Genomics Workbench tool. The involved set of poplars had a high level of genetic diversity – the number of single nucleotide polymorphisms (SNPs) detected in each genotype relative to the reference ITS1 and ITS2 sequences of P. trichocarpa varying from 4 to 44. We showed that even trees which had been planted on the same territory and, probably, at the same time had significant genetic differences. It can be speculated that highly polymorphic plant material was used for planting poplars in Moscow. For some sites with SNPs, several variants of nucleotides were found in the same individual and the ratio of SNPs was different. We assume that close to 50/50 ratio is observed in interspecific hybrids due to genetic differences in the ITS sequences between maternal and paternal genotypes. For SNPs with a predominance of one of the variants, the presence of paralogues among numerous genomic copies of ITS sequences is more likely. The results of our work can provide a framework for molecular genetic markers application with the purpose of Populus species and interspecific hybrids identification, determination the origin of a number of natural hybrids, and monitoring the diversity of genus Populus in the Moscow city

    System and usage in the history of verb

    No full text

    A Pipeline NanoTRF as a New Tool for De Novo Satellite DNA Identification in the Raw Nanopore Sequencing Reads of Plant Genomes

    No full text
    High-copy tandemly organized repeats (TRs), or satellite DNA, is an important but still enigmatic component of eukaryotic genomes. TRs comprise arrays of multi-copy and highly similar tandem repeats, which makes the elucidation of TRs a very challenging task. Oxford Nanopore sequencing data provide a valuable source of information on TR organization at the single molecule level. However, bioinformatics tools for de novo identification of TRs in raw Nanopore data have not been reported so far. We developed NanoTRF, a new python pipeline for TR repeat identification, characterization and consensus monomer sequence assembly. This new pipeline requires only a raw Nanopore read file from low-depth (<1×) genome sequencing. The program generates an informative html report and figures on TR genome abundance, monomer sequence and monomer length. In addition, NanoTRF performs annotation of transposable elements (TEs) sequences within or near satDNA arrays, and the information can be used to elucidate how TR–TE co-evolve in the genome. Moreover, we validated by FISH that the NanoTRF report is useful for the evaluation of TR chromosome organization—clustered or dispersed. Our findings showed that NanoTRF is a robust method for the de novo identification of satellite repeats in raw Nanopore data without prior read assembly. The obtained sequences can be used in many downstream analyses including genome assembly assistance and gap estimation, chromosome mapping and cytogenetic marker development
    corecore