8 research outputs found
Comparison of plasma endothelin levels between osteoporotic, osteopenic and normal subjects
BACKGROUND: It has been demonstrated that endothelins (ET) have significant roles in bone remodeling, metabolism and physiopathology of several bone diseases. We aimed to investigate if there was any difference between the plasma ET levels of osteoporotic patients and normals. METHODS: 86 patients (70 women and 16 men) with a mean age of 62.6 (ranges: 51–90) years were included in this study. Patients were divided into groups of osteoporosis, osteopenia and normal regarding reported T scores of DEXA evaluation according to the suggestions of World Health Organization. According to these criteria 19, 43 and 24 were normal, osteopenic and osteoporotic respectively. Then total plasma level of ET was measured in all patients with monoclonal antibody based sandwich immunoassay (EIA) method. One-way analysis of variance test was used to compare endothelin values between normals, osteopenics and osteoporotics. RESULTS: Endothelin total plasma level in patients was a mean of 98.36 ± 63.96, 100.92 ± 47.2 and 99.56 ± 56.6 pg/ml in osteoporotic, osteopenic and normal groups respectively. The difference between groups was not significant (p > 0.05). CONCLUSION: No significant differences in plasma ET levels among three groups of study participants could be detected in this study
The impact of ocean deoxygenation on iron release from continental margin sediments
In the oceans’ high-nitrate–low-chlorophyll regions, such as the Peru/Humboldt Current system and the adjacent eastern equatorial Pacific1, primary productivity is limited by the micronutrient iron. Within the Peruvian upwelling area, bioavailable iron is released from the reducing continental margin sediments2. The magnitude of this seafloor source could change with fluctuations in the extension or intensity of the oxygen minimum zones3, 4. Here we show that measurements of molybdenum, uranium and iron concentrations can be used as a proxy for sedimentary iron release, and use this proxy to assess iron release from the sea floor beneath the Peru upwelling system during the past 140,000 years. We observe a coupling between levels of denitrification, as indicated by nitrogen isotopes, trace metal proxies for oxygenation, and sedimentary iron concentrations. Specifically, periods with poor upper ocean oxygenation are characterized by more efficient iron retention in the sediment and a diminished iron supply to the water column. We attribute efficient iron retention under more reducing conditions to widespread sulphidic conditions in the surface sediment and concomitant precipitation of iron sulphides. We argue that iron release from continental margin sediments is most effective in a narrow redox window where neither oxygen nor sulphide is present. We therefore suggest that future deoxygenation in the Peru upwelling area would be unlikely to result in increased iron availability, whereas in weaker oxygen minimum zones partial deoxygenation may enhance the iron supply