2,337 research outputs found

    Unidirectional Invisibility and PT-Symmetry with Graphene

    Full text link
    We investigate the reflectionlessness and invisibility properties in the transverse electric (TE) mode solution of a linear homogeneous optical system which comprises the PT\mathcal{PT}-symmetric structures covered by graphene sheets. We derive analytic expressions, indicate roles of each parameter governing optical system with graphene and justify that optimal conditions of these parameters give rise to broadband and wide angle invisibility. Presence of graphene turns out to shift the invisible wavelength range and to reduce the required gain amount considerably, based on its chemical potential and temperature. We substantiate that our results yield broadband reflectionless and invisible configurations for realistic materials of small refractive indices, usually around η=1\eta = 1, and of small thickness sizes with graphene sheets of rather small temperatures and chemical potentials. Finally, we demonstrate that pure PT\mathcal{PT}-symmetric graphene yields invisibility at small temperatures and chemical potentials.Comment: 20 pages, 1 table 17 figure

    Exact norm-conserving stochastic time-dependent Hartree-Fock

    Full text link
    We derive an exact single-body decomposition of the time-dependent Schroedinger equation for N pairwise-interacting fermions. Each fermion obeys a stochastic time-dependent norm-preserving wave equation. As a first test of the method we calculate the low energy spectrum of Helium. An extension of the method to bosons is outlined.Comment: 21 pages, 3 figures, LaTeX fil

    Polymer depletion interaction between two parallel repulsive walls

    Get PDF
    The depletion interaction between two parallel repulsive walls confining a dilute solution of long and flexible polymer chains is studied by field-theoretic methods. Special attention is paid to self-avoidance between chain monomers relevant for polymers in a good solvent. Our direct approach avoids the mapping of the actual polymer chains on effective hard or soft spheres. We compare our results with recent Monte Carlo simulations [A. Milchev and K. Binder, Eur. Phys. J. B 3, 477 (1998)] and with experimental results for the depletion interaction between a spherical colloidal particle and a planar wall in a dilute solution of nonionic polymers [D. Rudhardt, C. Bechinger, and P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)].Comment: 17 pages, 3 figures. Final version as publishe

    Spectra of PP-Wave Limits of M-/Superstring Theory on AdS_p x S^q Spaces

    Get PDF
    In this paper we show how one can obtain very simply the spectra of the PP-wave limits of M-theory over AdS_7(4) x S^4(7) spaces and IIB superstring theory over AdS_5 x S^5 from the oscillator construction of the Kaluza-Klein spectra of these theories over the corresponding spaces. The PP-wave symmetry superalgebras are obtained by taking the number P of ``colors'' of oscillators to be large (infinite). In this large P limit, the symmetry superalgebra osp(8*|4) of AdS_7 x S^4 and the symmetry superalgebra osp(8|4,R) of AdS_4 x S^7 lead to isomorphic PP-wave algebras, which is the semi-direct sum of su(4|2) with H^(18,16), while the symmetry superalgebra su(2,2|4) of AdS_5 x S^5 leads to the semi-direct sum of [psu(2|2) + psu(2|2) + u(1)] with H^(16,16) as its PP-wave algebra [H^(m,n) denoting a super-Heisenberg algebra with m bosonic and n fermionic generators]. The zero mode spectra of M-theory or IIB superstring theory in the PP-wave limit corresponds simply to the unitary positive energy representations of these algebras whose lowest weight vector is the Fock vacuum of all the oscillators. General positive energy supermultiplets including those corresponding to higher modes can similarly be constructed by the oscillator method.Comment: Typos corrected; references added; minor modifications to improve presentation; 37 pages, LaTeX fil

    A thermal instability for positive brane cosmological constant in the Randall-Sundrum cosmologies

    Get PDF
    We describe a novel dynamical mechanism to radiate away a positive four dimensional cosmological constant, in the Randall-Sundrum cosmological scenario. We show that there are modes of the bulk gravitational field for which the brane is effectively a mirror. This will generally give rise to an emission of thermal radiation from the brane into the bulk. The temperature turns out to be nonvanishing only if the effective four dimensional cosmological constant is positive. In any theory where the four dimensional vacuum energy is a function of physical degrees of freedom, there is then a mechanism that radiates away any positive four dimensional cosmological constant.Comment: 14 pages. The discussion on the relation between temperature and effective 4d cosmological constant is changed. References are adde

    SH3TC2, a protein mutant in Charcot-Marie-Tooth neuropathy, links peripheral nerve myelination to endosomal recycling

    Get PDF
    Patients with Charcot-Marie-Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment. Here, we show that SH3TC2 interacts with the small guanosine triphosphatase Rab11, which is known to regulate the recycling of internalized membranes and receptors back to the cell surface. Results of protein binding studies and transferrin receptor trafficking are in line with a role of SH3TC2 as a Rab11 effector molecule. Consistent with a function of Rab11 in Schwann cell myelination, SH3TC2 mutations that cause neuropathy disrupt the SH3TC2/Rab11 interaction, and forced expression of dominant negative Rab11 strongly impairs myelin formation in vitro. Our data indicate that the SH3TC2/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelinatio

    Superconformal symmetry and maximal supergravity in various dimensions

    Full text link
    In this paper we explore the relation between conformal superalgebras with 64 supercharges and maximal supergravity theories in three, four and six dimensions using twistorial oscillator techniques. The massless fields of N=8 supergravity in four dimensions were shown to fit into a CPT-self-conjugate doubleton supermultiplet of the conformal superalgebra SU(2,2|8) a long time ago. We show that the fields of maximal supergravity in three dimensions can similarly be fitted into the super singleton multiplet of the conformal superalgebra OSp(16|4,R), which is related to the doubleton supermultiplet of SU(2,2|8) by dimensional reduction. Moreover, we construct the ultra-short supermultiplet of the six-dimensional conformal superalgebra OSp(8*|8) and show that its component fields can be organized in an on-shell superfield. The ultra-short OSp(8*|8) multiplet reduces to the doubleton supermultiplet of SU(2,2|8) upon dimensional reduction. We discuss the possibility of a chiral maximal (4,0) six-dimensional supergravity theory with USp(8) R-symmetry that reduces to maximal supergravity in four dimensions and is different from six-dimensional (2,2) maximal supergravity, whose fields cannot be fitted into a unitary supermultiplet of a simple conformal superalgebra. Such an interacting theory would be the gravitational analog of the (2,0) theory.Comment: 54 pages, PDFLaTeX, Section 5 and several references added. Version accepted for publication in JHE

    Topological wave functions and heat equations

    Full text link
    It is generally known that the holomorphic anomaly equations in topological string theory reflect the quantum mechanical nature of the topological string partition function. We present two new results which make this assertion more precise: (i) we give a new, purely holomorphic version of the holomorphic anomaly equations, clarifying their relation to the heat equation satisfied by the Jacobi theta series; (ii) in cases where the moduli space is a Hermitian symmetric tube domain G/KG/K, we show that the general solution of the anomaly equations is a matrix element \IP{\Psi | g | \Omega} of the Schr\"odinger-Weil representation of a Heisenberg extension of GG, between an arbitrary state Ψ\bra{\Psi} and a particular vacuum state Ω\ket{\Omega}. Based on these results, we speculate on the existence of a one-parameter generalization of the usual topological amplitude, which in symmetric cases transforms in the smallest unitary representation of the duality group GG' in three dimensions, and on its relations to hypermultiplet couplings, nonabelian Donaldson-Thomas theory and black hole degeneracies.Comment: 50 pages; v2: small typos fixed, references added; v3: cosmetic changes, published version; v4: typos fixed, small clarification adde

    Unified Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Five Dimensions

    Full text link
    Unified N=2 Maxwell-Einstein supergravity theories (MESGTs) are supergravity theories in which all the vector fields, including the graviphoton, transform in an irreducible representation of a simple global symmetry group of the Lagrangian. As was established long time ago, in five dimensions there exist only four unified Maxwell-Einstein supergravity theories whose target manifolds are symmetric spaces. These theories are defined by the four simple Euclidean Jordan algebras of degree three. In this paper, we show that, in addition to these four unified MESGTs with symmetric target spaces, there exist three infinite families of unified MESGTs as well as another exceptional one. These novel unified MESGTs are defined by non-compact (Minkowskian) Jordan algebras, and their target spaces are in general neither symmetric nor homogeneous. The members of one of these three infinite families can be gauged in such a way as to obtain an infinite family of unified N=2 Yang-Mills-Einstein supergravity theories, in which all vector fields transform in the adjoint representation of a simple gauge group of the type SU(N,1). The corresponding gaugings in the other two infinite families lead to Yang-Mills-Einstein supergravity theories coupled to tensor multiplets.Comment: Latex 2e, 28 pages. v2: reference added, footnote 14 enlarge
    corecore