27 research outputs found

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Plant vascular development: from early specification to differentiation.

    Get PDF
    Vascular tissues in plants are crucial to provide physical support and to transport water, sugars and hormones and other small signalling molecules throughout the plant. Recent genetic and molecular studies have identified interconnections among some of the major signalling networks that regulate plant vascular development. Using Arabidopsis thaliana as a model system, these studies enable the description of vascular development from the earliest tissue specification events during embryogenesis to the differentiation of phloem and xylem tissues. Moreover, we propose a model for how oriented cell divisions give rise to a three-dimensional vascular bundle within the root meristem

    B cells in multiple sclerosis — from targeted depletion to immune reconstitution therapies

    No full text
    Increasing evidence indicates the involvement of B cells in the pathogenesis of multiple sclerosis (MS), but their precise roles are unclear. In this Review, we provide an overview of the development and physiological functions of B cells and the main mechanisms through which B cells are thought to contribute to CNS autoimmunity. In MS, abnormalities of B cell function include pro-inflammatory cytokine production, defective B cell regulatory function and the formation of tertiary lymphoid-like structures in the CNS, which are the likely source of abnormal immunoglobulin production detectable in the cerebrospinal fluid. We also consider the hypothesis that Epstein-Barr virus (EBV) is involved in the B cell overactivation that leads to inflammatory injury to the CNS in MS. We also review the immunological effects - with a focus on the effects on B cell subsets - of several successful therapeutic approaches in MS, including agents that selectively deplete B cells (rituximab, ocrelizumab and ofatumumab), agents that less specifically deplete lymphocytes (alemtuzumab and cladribine) and autologous haematopoietic stem cell transplantation, in which the immune system is unselectively ablated and reconstituted. We consider the insights that these effects on B cell populations provide and their potential to further our understanding and targeting of B cells in MS

    Antiviral immune responses: triggers of or triggered by autoimmunity?

    Full text link
    The predisposition of individuals to several common autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis, is genetically linked to certain human MHC class II molecules and other immune modulators. However, genetic predisposition is only one risk factor for the development of these diseases, and low concordance rates in monozygotic twins, as well as the geographical distribution of disease risk, suggest the involvement of environmental factors in the development of these diseases. Among these environmental factors, infections have been implicated in the onset and/or promotion of autoimmunity. In this Review, we outline the mechanisms by which viral infection can trigger autoimmune disease and describe the pathways by which infection and immune control of infectious disease might be dysregulated during autoimmunity
    corecore