4 research outputs found

    O v?rus sincicial respirat?rio induz NETose cl?ssica ROS-dependente atrav?s da ativa??o de PAD4 e das vias de necroptose

    No full text
    Submitted by PPG Pediatria e Sa?de da Crian?a ([email protected]) on 2018-05-21T13:12:10Z No. of bitstreams: 1 Vers?o completa da disserta??o-stefaniemuraro.pdf: 4426933 bytes, checksum: 5733e09060e6e08135de26c11374b171 (MD5)Approved for entry into archive by Caroline Xavier ([email protected]) on 2018-05-28T17:29:36Z (GMT) No. of bitstreams: 1 Vers?o completa da disserta??o-stefaniemuraro.pdf: 4426933 bytes, checksum: 5733e09060e6e08135de26c11374b171 (MD5)Made available in DSpace on 2018-05-28T17:34:08Z (GMT). No. of bitstreams: 1 Vers?o completa da disserta??o-stefaniemuraro.pdf: 4426933 bytes, checksum: 5733e09060e6e08135de26c11374b171 (MD5) Previous issue date: 2018-03-16Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPESRespiratory syncytial virus (RSV) is a major cause of diseases of the respiratory tract in humans being mainly associated with bronchiolitis, chronic obstructive pulmonary disease (COPD) and asthma exacerbation. RSV infection occurs primarily in pulmonary epithelial cells and, once infection is established, an innate immune response is triggered and mainly neutrophil recruitment is induced. Neutrophils can extrude neutrophil extracellular traps (NETs) capable of entrapping and inactivate a multitude of microorganisms because of its composition and due to the stringy nature of DNA fibers. Recently, was demonstrated that RSV particles and its fusion (F) protein were able to induce the release NETs coated with neutrophil elastase and myeloperoxidase, both antimicrobial peptides. Also, was observed that the excessive formation of NETs can have negative consequences to the host, such as airway obstruction during RSV infection. Therefore, the aim was to evaluate the mechanisms involved in NET formation induced by RSV infection of neutrophils, alveolar epithelial cells (A549) or lung fibroblasts (MRC5). Human neutrophils were infected with RSV and were able to induce NETs release only after 3 hours of stimulation indicating classical NETosis. Next was characterized NETs formation during infection associating DNA extrusion with MPO, NE and F protein of RSV. Was also observed NADPH oxidase and PAD4 dependence and PI3K/AKT, ERK and p38 MAPK pathways during infection. The inhibition of these signaling pathways, PAD4 and ROS production abolished NET formation. Considering a possible involvement of necroptosis during NETs production, were tested MLKL and RIPK inhibitors and evaluated LDH release in the supernatant of infected neutrophils. Neutrophils released LDH and depend on necroptosis induction to produce NETs. Likewise, neutrophils were co-cultured with A549 or MRC5 cells infected with RSV. Both A549 and MRC5 cells triggered NET release by human neutrophils in a virus concentration-dependent manner, the opposite occurs when used UV-inactivated virus. Briefly, RSV induces the classical/ROS-dependent NETosis by human neutrophils, and this effect relies on specific kinases activity. Furthermore, neutrophils are able to recognize pulmonary cells infected by RSV, releasing NETs. Thus, NETs release control could be crucial for minimizing tissue inflammation caused by RSV infection.O v?rus sincicial respirat?rio (VSR) ? uma das principais causas de doen?as do trato respirat?rio em humanos sendo associado principalmente com bronquiolite, doen?a pulmonar obstrutiva cr?nica (DPOC) e exacerba??o de asma. O VSR infecta principalmente c?lulas epiteliais pulmonares e, uma vez que a infec??o ? estabelecida, uma resposta imune inata ? desencadeada e ocorre o recrutamento de c?lulas do sistema imune, principalmente neutr?filos. Os neutr?filos podem liberar redes extracelulares de neutr?filos (NETs) capazes de capturar e inativar uma grande quantidade de microrganismos devido ? sua composi??o e natureza fibrosa das fibras de DNA. Recentemente, foi demonstrado que part?culas do VSR al?m da prote?na de fus?o (F) do v?rus foram capazes de induzir a libera??o de NETs revestidas com elastase neutrof?lica e mieloperoxidase, ambos pept?deos com atividade antimicrobiana. Al?m disso, observou-se que a forma??o excessiva de NETs pode ter consequ?ncias negativas para o hospedeiro, como a obstru??o das vias a?reas durante a infec??o por VSR. Portanto, o objetivo foi avaliar os mecanismos envolvidos na forma??o de NET induzida pela infec??o por RSV em neutr?filos humanos, c?lulas epiteliais alveolares (A549) ou fibroblastos pulmonares (MRC5). Neutr?filos humanos foram infectados com VSR e foram capazes de induzir a libera??o de NETs somente ap?s 3 horas de infec??o, indicando uma NETose cl?ssica. Em seguida, foi caracterizada a forma??o de NETs durante a infec??o associando a extrus?o de DNA com as prote?nas MPO, NE e com a prote?na F do VSR. Tamb?m se observou a depend?ncia de NADPH oxidase e PAD4 e das vias de sinaliza??o PI3K / AKT, ERK e p38 MAPK durante a infec??o. A inibi??o dessas vias de sinaliza??o, da produ??o de PAD4 e de EROs aboliu a forma??o de NET. Considerando um poss?vel envolvimento da necroptose na produ??o de NETs, foram utilizados inibidores de MLKL e RIPK1 e foi avaliada a libera??o de LDH no sobrenadante de neutr?filos infectados. Os neutr?filos liberaram LDH e dependeram da ativa??o da necroptose para produzir NETs. Do mesmo modo, os neutr?filos foram co-cultivados com c?lulas A549 ou MRC5 infectadas com VSR. Ambas as c?lulas A549 e MRC5 desencadearam a libera??o de NET por neutr?filos humanos de uma maneira dependente da concentra??o de v?rus, o oposto ocorreu quando usado um v?rus UV-inativado. Resumidamente, o VSR induz a NETose cl?ssica / dependente de EROs em neutr?filos humanos, e este efeito depende de atividade espec?fica de quinases. Al?m disso, os neutr?filos s?o capazes de reconhecer c?lulas pulmonares infectadas pelo VSR, induzindo a libera??o NETs. Assim, o controle de libera??o de NETs pode ser crucial para minimizar a inflama??o do tecido causada pela infec??o por VSR

    Lung Inflammation Induced by Inactivated SARS-CoV-2 in C57BL/6 Female Mice Is Controlled by Intranasal Instillation of Vitamin D

    No full text
    The COVID-19 pandemic was triggered by the coronavirus SARS-CoV-2, whose peak occurred in the years 2020 and 2021. The main target of this virus is the lung, and the infection is associated with an accentuated inflammatory process involving mainly the innate arm of the immune system. Here, we described the induction of a pulmonary inflammatory process triggered by the intranasal (IN) instillation of UV-inactivated SARS-CoV-2 in C57BL/6 female mice, and then the evaluation of the ability of vitamin D (VitD) to control this process. The assays used to estimate the severity of lung involvement included the total and differential number of cells in the bronchoalveolar lavage fluid (BALF), histopathological analysis, quantification of T cell subsets, and inflammatory mediators by RT-PCR, cytokine quantification in lung homogenates, and flow cytometric analysis of cells recovered from lung parenchyma. The IN instillation of inactivated SARS-CoV-2 triggered a pulmonary inflammatory process, consisting of various cell types and mediators, resembling the typical inflammation found in transgenic mice infected with SARS-CoV-2. This inflammatory process was significantly decreased by the IN delivery of VitD, but not by its IP administration, suggesting that this hormone could have a therapeutic potential in COVID-19 if locally applied. To our knowledge, the local delivery of VitD to downmodulate lung inflammation in COVID-19 is an original proposition

    Inflammation markers in the saliva of infants born from Zika-infected mothers: exploring potential mechanisms of microcephaly during fetal development

    Get PDF
    Zika virus (ZIKV) has emerged as one of the most medically relevant viral infections of the past decades; the devastating effects of this virus over the developing brain are a major matter of concern during pregnancy. Although the connection with congenital malformations are well documented, the mechanisms by which ZIKV reach the central nervous system (CNS) and the causes of impaired cortical growth in affected fetuses need to be better addressed. We performed a non-invasive, meta bolomicsbased screening of saliva from infants with congenital Zika syndrome (CZS), born from mothers that were infected with ZIKV during pregnancy. We were able to identify three biomarkers that suggest that this population suffered from an important inflammatory process; with the detection of mediators associated with glial activation, we propose that microcephaly is a product of immune response to the virus, as well as excitotoxicity mechanisms, which remain ongoing even after birth9CAPES - Coordenação de Aperfeiçoamento de Pessoal e Nível SuperiorCNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São PauloFNDCT - Fundo Nacional de Desenvolvimento Científico e Tecnológico88882.305824/2013-01; 1578388; 1489740; 14/201614/201611/50400-0; 18/14657-5; 16/17066-2; 18/03321-6; 13/07607-814/201
    corecore