4,490 research outputs found
Phase diagram of the three-dimensional Hubbard model at half filling
We investigate the phase diagram of the three-dimensional Hubbard model at
half filling using quantum Monte Carlo (QMC) simulations. The antiferromagnetic
Neel temperature T_N is determined from the specific heat maximum in
combination with finite-size scaling of the magnetic structure factor. Our
results interpolate smoothly between the asymptotic solutions for weak and
strong coupling, respectively, in contrast to previous QMC simulations. The
location of the metal-insulator transition in the paramagnetic phase above T_N
is determined using the electronic compressibility as criterion.Comment: 6 pages, 6 figures, to be published in Eur. Phys. J. B (2000
Time evolution of one-dimensional Quantum Many Body Systems
The level of current understanding of the physics of time-dependent strongly
correlated quantum systems is far from complete, principally due to the lack of
effective controlled approaches. Recently, there has been progress in the
development of approaches for one-dimensional systems. We describe recent
developments in the construction of numerical schemes for general
(one-dimensional) Hamiltonians: in particular, schemes based on exact
diagonalization techniques and on the density matrix renormalization group
method (DMRG). We present preliminary results for spinless fermions with
nearest-neighbor-interaction and investigate their accuracy by comparing with
exact results.Comment: Contribution for the conference proceedings of the "IX. Training
Course in the Physics of Correlated Electron Systems and High-Tc
Superconductors" held in Vietri sul Mare (Salerno, Italy) in October 200
Time evolution of correlations in strongly interacting fermions after a quantum quench
Using the adaptive time-dependent density matrix renormalization group, we
study the time evolution of density correlations of interacting spinless
fermions on a one-dimensional lattice after a sudden change in the interaction
strength. Over a broad range of model parameters, the correlation function
exhibits a characteristic light-cone-like time evolution representative of a
ballistic transport of information. Such behavior is observed both when
quenching an insulator into the metallic region and also when quenching within
the insulating region. However, when a metallic state beyond the quantum
critical point is quenched deep into the insulating regime, no indication for
ballistic transport is observed. Instead, stable domain walls in the density
correlations emerge during the time evolution, consistent with the predictions
of the Kibble-Zurek mechanism.Comment: Published version; minor changes, references adde
Comment on "Novel Superfluidity in a Trapped Gas of Fermi Atoms with Repulsive Interaction Loaded on an Optical Lattice"
In a recent letter Machida et al. [Phys. Rev. Lett. 93, 200402 (2004)]
concluded that in a trapped gas of fermions with repulsive interactions a
superfluid phase appears around the Mott-insulator at the center of the trap.
They base their conclusion on a negative binding energy, and a large weight for
a singlet formed by particles located at opposite sides of the Mott-insulator.
We show here that the observed effects are not related to superfluidity.Comment: Revtex file, 1 page, 1 figure, published versio
Counterflow Extension for the F.A.S.T.-Model
The F.A.S.T. (Floor field and Agent based Simulation Tool) model is a
microscopic model of pedestrian dynamics, which is discrete in space and time.
It was developed in a number of more or less consecutive steps from a simple CA
model. This contribution is a summary of a study on an extension of the
F.A.S.T-model for counterflow situations. The extensions will be explained and
it will be shown that the extended F.A.S.T.-model is capable of handling
various counterflow situations and to reproduce the well known lane formation
effect.Comment: Contribution to Crowds and Cellular Automata Workshop 2008. Accepted
for publication in "Cellular Automata -- 8th International Conference on
Cellular Automata for Research and Industry, ACRI 2008, Yokohama, Japan,
September 23-26, Springer 2008, Proceedings
Mott Domains of Bosons Confined on Optical Lattices
In the absence of a confining potential, the boson Hubbard model in its
ground state is known to exhibit a superfluid to Mott insulator quantum phase
transition at commensurate fillings and strong on-site repulsion. In this
paper, we use quantum Monte Carlo simulations to study the ground state of the
one dimensional bosonic Hubbard model in a trap. We show that some, but not
all, aspects of the Mott insulating phase persist when a confining potential is
present. The Mott behavior is present for a continuous range of incommensurate
fillings, a very different situation from the unconfined case. Furthermore the
establishment of the Mott phase does not proceed via a quantum phase transition
in the traditional sense. These observations have important implications for
the interpretation of experimental results for atoms trapped on optical
lattices. Initial results show that, qualitatively, the same results persist in
higher dimensions.Comment: Revtex file, five figures, include
Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences
The two-frequency heating technique was studied to increase the beam
intensities of highly charged ions provided by the high-voltage extraction
configuration (HEC) ion source at the National Institute of Radiological
Sciences (NIRS). The observed dependences on microwave power and frequency
suggested that this technique improved plasma stability but it required precise
frequency tuning and more microwave power than was available before 2013.
Recently, a new, high-power (1200 W) wide bandwidth (17.1-18.5 GHz)
travelling-wave-tube amplifier (TWTA) was installed. After some single tests
with klystron and TWT amplifiers the simultaneous injection of the two
microwaves has been successfully realized. The dependence of highly charged
ions (HCI) currents on the superposed microwave power was studied by changing
only the output power of one of the two amplifiers, alternatively. While
operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was
swept within its full limits (17.1-18.5 GHz), and the effect of this frequency
on the HCI-production rate was examined under several operation conditions. As
an overall result, new beam records of highly charged argon, krypton, and xenon
beams were obtained at the NIRS-HEC ion source by this high-power two-frequency
operation mode
- …