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In the absence of a confining potential, the boson-Hubbard model exhibits a superfluid to Mott insulator
quantum phase transition at commensurate fillings and strong coupling. We use quantum Monte Carlo
simulations to study the ground state of the one-dimensional bosonic Hubbard model in a trap. Some, but
not all, aspects of the Mott insulating phase persist. Mott behavior occurs for a continuous range of
incommensurate fillings, very different from the unconfined case, and the establishment of the Mott phase
does not proceed via a traditional quantum phase transition. These results have important implications for
interpreting experiments on ultracold atoms on optical lattices.
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model in a confining quadratic potential and provide a
quantitative map of the state diagram. To our knowledge,

gimes of the state diagram can be characterized by the
topology of the density and local compressibility profiles.
A considerable amount of work has been done in the last
decade to determine the ground state phase diagram of
correlated bosons on a lattice described by the ‘‘boson-
Hubbard’’ Hamiltonian [1–5]. On-site repulsion can
produce a Mott insulating phase at commensurate fillings,
with a quantum phase transition to a superfluid as the
density is shifted or the interaction strength weakened.
Longer range interactions can cause charge density wave,
stripe, or even supersolid order [6,7]. Extensions to
disordered systems have allowed the detailed study of
the interplay of randomness and interactions in quantum
systems [8].

Recently, the trapping of atoms on optical lattices has
given another experimental realization of these bosonic
phases. However, the quadratic confining potential, present
in addition to the regular ‘‘lattice’’ potential, leads to a
number of fundamentally new, and open, issues: (i) Does
the confining potential preclude the formation of Mott
regions by providing a continuous, unbounded, distribution
of local site energies? (ii) If an insulating phase still exists,
how is it characterized? (iii) What are the quantitative
values of the trap curvature and interaction strength that
support Mott phases? These questions are largely unad-
dressed in the literature.

In this paper we report the first quantum Monte Carlo
(QMC) simulation of the one-dimensional boson-Hubbard
0031-9007=02=89(11)=117203(4)$20.00
the only non-mean-field work on this problem [9] is on
very small systems (five particles). We find that the trap
changes the physics fundamentally from that found in
earlier simulations [2] and subsequent analytic [5] studies.
For example, the vanishing of the global compressibility,
discussed at length in [1,2] and reported in recent mean-
field studies of the boson-Hubbard model in the context of
optical lattices [10], but which ignores the confining po-
tential, is absent. Other recent papers [9–13] on bosons in
optical traps have likewise emphasized similarities to the
physics in the absence of a confining potential, and have
used values of the unconfined lattice critical coupling to
compare with experimental data.

We find the inhomogeneous potential resulting from the
confining trap is a crucial feature in discussing Mott re-
gions at incommensurate fillings [11], and the physics of
bosons on optical lattices generally. The Mott insulating
regions exist above a threshold interaction strength, even
without the commensurate filling required in the noncon-
fined case. This is a consequence of the inhomogeneous
distribution of boson densities which allows extended Mott
domains with, for example, one particle per site to coexist
with regions of other density and is a unique feature which
distinguishes the behavior of the confined model.
Similarly, the global compressibility is nonzero for all
densities, including commensurate ones. The different re-
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FIG. 1. The evolution of the local density ni as a function of
position x and increasing the total number of bosons. The trap
curvature is Vc � 0:008, L � 100, and the onsite repulsion is
V0 � 4. At low fillings the system is in a superfluid phase. Mott
insulating behavior appears as the density is increased, but then
at yet larger fillings a superfluid begins to form at the center of
the insulating region.
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FIG. 2. Cuts across Fig. 1 show the compressibility profile �i
(solid line) associated with the local density ni (circles). The
fillings are Nb � 25 (a), 33 (b), 50 (c), and 60 (d). �i is very
small when ni � 1. For the arrows see text.
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Therefore, in this context, the (global) density, �, defined
as the total number of particles divided by the system size,
loses its meaning since the particles are not uniformly
distributed and the ‘‘system size’’ itself is ill-defined.
Adding particles can push bosons deeper into the confin-
ing potential at the edges of the system, thus changing
the ‘‘size.’’

We review briefly the properties of the ground state of
the d-dimensional nonconfined boson-Hubbard model.
This model has two phases, a Mott insulator at commen-
surate fillings and sufficiently strong interactions, as well
as a superfluid elsewhere [1,2]. The critical behavior is of
two types: mean field for transitions induced by tuning the
density and of the �d� 1� dimensional XY universality
class when the interaction strength is swept at fixed com-
mensurate filling. One of the key new results of this paper
is that this special status of commensurate filling is lost in
the case of a confining potential since commensuration is
well defined only locally.

We study the Hamiltonian

H � �t
X

i

�ayi ai�1 � ayi�1ai� � V0

X

i

ni�ni � 1�

� Vc

X

i

�i� L=2�2 ni; (1)

at zero temperature. Here t measures the boson kinetic
energy, V0 the on-site repulsion, Vc the curvature of the
quadratic confining potential, and L the number of sites. In
the presence of the trap, the value of L should be chosen
such that for the given trap curvature, the bosons do not see
the edge of the system and therefore do not leak out. Our
simulations were done with the world-line quantum Monte
Carlo algorithm in the canonical ensemble [2,14]. The
chemical potential � � @E=@N is obtained by differenti-
ating numerically the energy with respect to the particle
number [15]. In the presence of a confining potential, it is
important to measure the local density of bosons, ni �
hayi aii, as well as the local compressibility, �i �
@ni=@�i � �	hn2i i � hnii2
.

Figure 1 shows the evolution of the local boson density
with increasing total occupancy of the lattice. At low
fillings the density profile is smooth, with an inverted
parabolic shape reflecting the confining potential. Above
a critical filling of about 30 bosons (for this choice of V0

and Vc) a plateau with a local filling of one boson per site
develops in the density profile which is analogous to the
Mott structure of N vs � in the unconfined model. This
plateau indicates the presence of an incompressible, insu-
lating region where �i, as defined above, drops to a small
but finite value (Fig. 2) which vanishes for V0 ! 1. Here
this behavior of �i will be taken as the signal for a Mott
region. As the density is increased further, the plateau
widens spatially. But when the energy cost of extending
the plateau to increasingly large values of the confining
potential becomes prohibitive, the occupancy begins to
exceed one at the center of the lattice, indicating a break-
down of Mott behavior there, but not everywhere.
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Increasing the filling further, for example, Nb � 116, even-
tually produces a second Mott region in the center of the
system with a local filling of two bosons per site without
destroying totally the first Mott region. Four slices from
Fig. 1 are shown in Fig. 2 along with the local compressi-
bilities. It is clear that at higher boson numbers, richer
structures where the local compressibility vanishes at sev-
eral locally commensurate densities can occur. Mean-field
work in two dimensions [9] shows a similar coexistence of
Mott and superfluid regions.

A central feature of the Mott phase transition of the
unconfined boson-Hubbard model is global incompressi-
bility: A charge gap opens up, i.e., the density gets ‘‘stuck’’
at � � integer for a range of chemical potentials �. One
might, then, crudely interpret the spatial dependence of the
local density in the confined case, Fig. 2, as rather analo-
gous to the chemical potential dependence in the uncon-
fined case [9]. This assumption and the � versus � curve in
117203-2
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the unconfined case allow us to calculate the site at which a
Mott domain is entered or exited. These are shown as
arrows in Fig. 2. However, it is vital to emphasize that
while the confined system has locally incompressible re-
gions, the global compressibility is never zero, which is
seen clearly in Fig. 3. The main figure should be contrasted
with the nonconfined case (inset).

An important difference in the behavior of the local �i is
especially evident in one dimension where, in the uncon-
fined case, the global compressibility diverges [2] as the
Mott lobe is approached, � / j�� 1j�1 for the first lobe.
Here, instead, we find �i / �ni � 1�, as shown in Fig. 4.
The origin of these differences is, of course, that the global
compressibility, � � ��h

P
ij ninji � hni2�, probes density

correlations at all length scales. In the unconfined case,
contrary to the confined system, the establishment of the
Mott phase is a true quantum phase transition: It happens
collectively throughout the system and the correlation
length diverges. There is, however, an interesting ‘‘univer-
sality’’ in the trapped system as a Mott region is ap-
proached. That is, the values of �i are the same even as
the total filling and the on-site repulsion are varied (see
Fig. 4). The same behavior is observed for the n � 2
locally incompressible phase.

Sets of runs such as those shown in Fig. 1 allow us to
determine the state diagram as a function of boson filling
and interaction strength for a given trap curvature. This is
shown in Fig. 5. Because of the absence of true phase
transitions, we have referred to Fig. 5 as a state diagram
rather than phase diagram. As the filling is increased at
fixed interaction strength, one crosses from a smooth den-
sity profile to one which has locally incompressible
‘‘Mott’’ domains, if V0 is large enough. Further increase
in the filling ultimately leads to the formation of regions at
the well center where ni > 1. In Fig. 5, region A admits
only [16] locally incompressible regions with ni � 1, as in
Figs. 2(b) and 2(c). Region B has ni > 1 surrounded by
incompressible regions, Fig. 2(d). Region C is where the
central part of the system has an ni � 2 incompressible
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FIG. 3. Nb (number of bosons) as a function of chemical
potential, � for V0 � 4:5. No globally incompressible Mott
plateau is observed. Inset shows the unconfined case.
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region which, when the boundary of the system is ap-
proached, falls off to a shoulder of ni � 1 Mott region
before reaching zero density. The ni � 1 and ni � 2 in-
compressible regions are separated by compressible re-
gions. Region D is where the center of the system is
compressible ni > 2, bounded by ni � 2 which in turn is
bounded by ni � 1 incompressible regions. Region E has
no incompressible regions.

Note that the values of V0 at which the A and C regions
in Fig. 5 are entered are of the same order as those of
the first two true Mott lobes in the nonconfined case [2].
This is consistent with the experimental results on three-
dimensional optical lattices [11] which appear to be in
agreement with the expected value in the nonconfined
case. Furthermore, the narrowness of region C could help
understand why the experiments [11] have not shown signs
of the n � 2 Mott region, even though ni � 2:5 in the core
of the system.

One of the interesting experimental results [11] is how
rapidly coherence is reestablished when V0 is suddenly
reduced from a value large enough to have produced large
incompressible regions. It was argued that the character-
istic time is of the order of the tunneling (hopping) time
between sites [11]. This is entirely consistent with the
picture we present here. If, for example, the density profile
is as in Fig. 2(c) when V0 is suddenly reduced to a very
small value, the system will evolve to a profile like in 2(a)
albeit with higher local density in the center. This is
accomplished by particles near the edges hopping towards
the center, and is greatly accelerated by the fact that the
trap is much lower near the center than near edges. In
addition, since there is only one center of nucleation (the
geometric center of the system) there is no slowing down
due to competition at domain walls where different nucle-
ation zones meet.
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FIG. 4. The local compressibility as a function of local density
for V0 � 4, Nb � 35 ( � ) and Nb � 80 ( � ) and for V0 � 4:5,
Nb � 90 ( 4 ) and Nb � 141 ( 5 ). � decreases linearly with n
as the Mott region, n � 1, is approached from below or above.
This behavior is dramatically different from the unconfined
system where � diverges.
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FIG. 5. The state diagram of correlated bosons in a quadratic
confining potential. The solid lines are to guide the eye, and the
dashed lines are extrapolations. See text for details.

VOLUME 89, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 9 SEPTEMBER 2002
In summary, we have discussed the nature of locally
incompressible Mott insulating behavior in a one-
dimensional system of interacting bosons in a confining
potential at T � 0. We conclude that because of the de-
struction of translation invariance, great care should be
taken in drawing on the analogy with the unconfined case
at a fundamental level. For one thing, it can support Mott
behavior off commensurate fillings. While Mott regions
still exist, the critical properties are completely altered:
Incompressible regions are established in a very localized
way and not at all critically in the usual sense. These
localized regions grow or shrink with V0, but are always
in coexistence with other regions, some compressible and
some which might be incompressible but at higher local
integer filling. In that sense, the formation of these Mott
regions is not a true quantum critical phenomenon as it is in
the unconfined case.

While we have focused on the new qualitative physics
which results from the confining potential, it is important
to emphasize that experiments on one and two dimensional
trapped systems are currently underway [12,17–19]. For
these, our paper should provide specific quantitative pre-
dictions for the critical ratios of interaction strength to
kinetic energy and trap curvature, as a function of density.
We are currently undertaking these comparisons. In addi-
tion, in the absence of traps, the phase diagram is qualita-
tively the same in one and two dimensions [1–3,5]. We
expect this to be true in the confined case too. In fact, initial
simulation results in two dimensions show this to be true.
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Note added.—A QMC study of the three-dimensional
system appeared recently [20] in which the authors also
conclude, as we do, that one cannot characterize globally
the transitions discussed here. They discuss a signal that
can be used experimentally to study the transition.
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