3,817 research outputs found

    Investigation of effectiveness of various methods with different unknown variables for 3-D eddy current analysis

    Get PDF
    Computer codes using the A-&#966;, A-&#966;-&#937;, A*-0&#937;-E, T-&#937;, and E-&#937; methods were developed. The effects of the volume ratio of the conductor region to the whole region, the shape of the conductor, and the ratio of the hole region to the conductor region on the computer storage, the CPU time, and the accuracy of the methods are investigated systematically using a few simple models. The effect of the conductivity of the conductor is also examined. The computer storage, the CPU time, and the error are found to increase with increase of the volume ratio of the conductor region to the whole region. The computer storage and the CPU time are affected by the shape of the conductor in some methods of analysis. The error of the A*-&#937;(E-&#937;) method is larger than that of the other methods</p

    Method for determining relaxation factor for modified Newton-Raphson method

    Get PDF
    In order to reduce the CPU time for the modified Newton-Raphson method which introduces a relaxation factor, the effect of the relaxation factor on the residual of the Galerkin method is examined in detail. It is shown that a relaxation factor which always provides convergent solutions can be easily searched. Various methods of searching for the relaxation factor to be used are compared </p

    Alternative formalism to the slave particle mean field theory of the t-J model without deconfinement

    Full text link
    An alternative formalism that does not require the assumption of the deconfinement phase of a U(1) gauge field is proposed for the slave particle mean field theory. Starting form the spin-fermion model, a spinon field, which is either fermion or boson, is introduced to represent the localized spin moment. We find a d-wave superconductive state in the mean field theory in the case of the fermion representation of the localized spin moment that corresponds to the slave boson mean field theory of the t-J model, whereas the d-wave superconductive state is absent in case of the Schwinger boson representation of the localized spin moments.Comment: 8 page

    Comparison of various methods of analysis and finite elements in 3-D magnetic field analysis

    Get PDF
    In order to evaluate the most suitable method of analysis (A- phi or T- Omega method) and finite element (nodal or edge element) for a given problem, the features of each method and element have been investigated. The accuracy, computer storage, and CPU time of each method and element are compared for a 3-D nonlinear magnetostatic model and a 3-D eddy current model. The flux and eddy current densities calculated are compared with those measured. It is shown that the accuracy and the CPU time of the edge element are better than those of the nodal element. The A- phi method is better than T- Omega method for nonlinear problems from the viewpoint of convergence characteristics of nonlinear iterations.</p

    New Superconducting and Magnetic Phases Emerge on the Verge of Antiferromagnetism in CeIn3_3

    Full text link
    We report the discovery of new superconducting and novel magnetic phases in CeIn3_3 on the verge of antiferromagnetism (AFM) under pressure (PP) through the In-nuclear quadrupole resonance (NQR) measurements. We have found a PP-induced phase separation of AFM and paramagnetism (PM) without any trace for a quantum phase transition in CeIn3_3. A new type of superconductivity (SC) was found in P=2.28−2.5P=2.28-2.5 GPa to coexist with AFM that is magnetically separated from PM where the heavy fermion SC takes place. We propose that the magnetic excitations such as spin-density fluctuations induced by the first-order magnetic phase transition might mediate attractive interaction to form Cooper pairs.Comment: 4 pages, 4 EPS figures, submitted to J. Phys. Soc. Jp

    Strong-Coupling Superconductivity of CeIrSi3_3 with the Non-centrosymmetric Crystal Structure

    Full text link
    We studied the pressure-induced superconductor CeIrSi3_3 with the non-centrosymmetric tetragonal structure under high pressure. The electrical resistivity and ac heat capacity were measured in the same run for the same sample. The critical pressure was determined to be PcP_{\rm c} = 2.25 GPa, where the antiferromagnetic state disappears. The heat capacity CacC_{\rm ac} shows both antiferromagnetic and superconducting transitions at pressures close to PcP_{\rm c}. On the other hand, the superconducting region is extended to high pressures of up to about 3.5 GPa, with the maximum transition temperature TscT_{\rm sc} = 1.6 K around 2.5−2.72.5-2.7 GPa. At 2.58 GPa, a large heat capacity anomaly was observed at TscT_{\rm sc} = 1.59 K. The jump of the heat capacity in the form of ΔCac/Cac(Tsc){\Delta}{C_{\rm ac}}/C_{\rm ac}(T_{\rm sc}) is 5.7 ±\pm 0.1. This is the largest observed value among previously reported superconductors, indicating the strong-coupling superconductivity. The electronic specific heat coefficient at TscT_{\rm sc} is, however, approximately unchanged as a function of pressure, even at PcP_{\rm c}.Comment: This paper will be published in J. Phys. Soc. Jpn. on the August issue of 200
    • …
    corecore